

B.M.S. College of Engineering, Bengaluru-560019

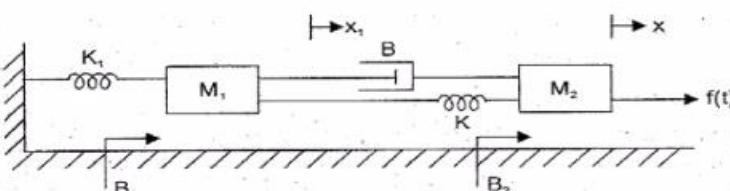
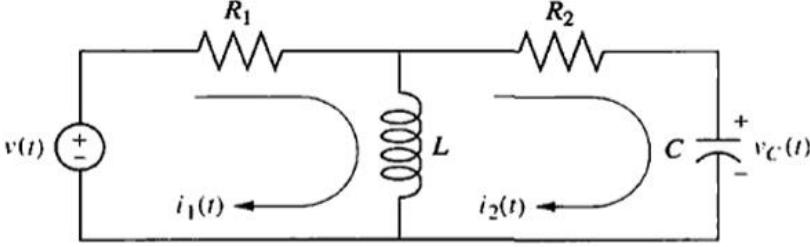
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Mechanical Engineering



Duration: 3 hrs.

Course Code: 23ME6PCCOE / 22ME6PCCOE

Max Marks: 100

Course: Control Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNITB - I					CO	PO	Marks
1	a)	Compare open loop and closed loop control system with one example.			CO1	PO3	10
	b)	Determine the transfer function of the given mechanical system			CO2	PO3	10
Fig 1 b							
OR							
2	a)	Determine the transfer function of the given electrical system			CO2	PO3	10
	b)						
	b)	List and explain any 5 basic terminologies of control system			CO1	PO3	2 * 5 = 10
UNIT - II							
3	a)	List and explain the types of standard test signals (inputs)			CO3	PO3	10
	b)	Derive an expression for the system response of first order system subjected to unit step input			CO3	PO3	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		OR			
4	a)	Derive an expression for the system response of second order system subjected to unit step input	CO3	PO3	10
	b)	State RH Criteria and explain special case 1 and special case 2	CO3	PO3	05
	c)	Explain steady state errors for various types of inputs	CO3	PO3	05
		UNIT - III			
5		The open loop transfer function of a unity negative feedback system is given by $k/ (s(s+1) (s+2))$. Draw the root locus as the value of k varies from zero to Infinity	CO4	PO3	20
		OR			
6		The open loop transfer function of a unity negative feedback system is given by $k(s+1) (s+2)/(s(s+3))$. Draw the root locus as the value of k varies from zero to Infinity	CO4	PO3	20
		UNIT - IV			
7		Bode magnitude and phase for the system with transfer function $G(S) = 200/ (s^2(s+10))$ and determine the stability of the system.	CO4	PO3	20
		OR			
8		Determine the value of K for a unity feedback control system having open loop transfer function $G(s)H(s) = K/(s(s+2) (s+4))$. Find the value of K for gain margin 20 decibels	CO4	PO3	20
		UNIT - V			
9	a)	Draw the polar plot and determine gain margin for the system having transfer function $G(s)H(s) = 1/(s+1)^3$	CO5	PO3	14
	b)	What is Polar plot? Explain gain margin and phase margin	CO5	PO3	06
		OR			
10	a)	State Nyquist Stability Criteria.	CO5	PO3	02
	b)	A negative feedback control system is characterized by an open-loop transfer function, $G(s)H(s) = 5/(s(s+1))$. Investigate the closed-loop stability of the system using Nyquist stability criterion.	CO5	PO3	18
