

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

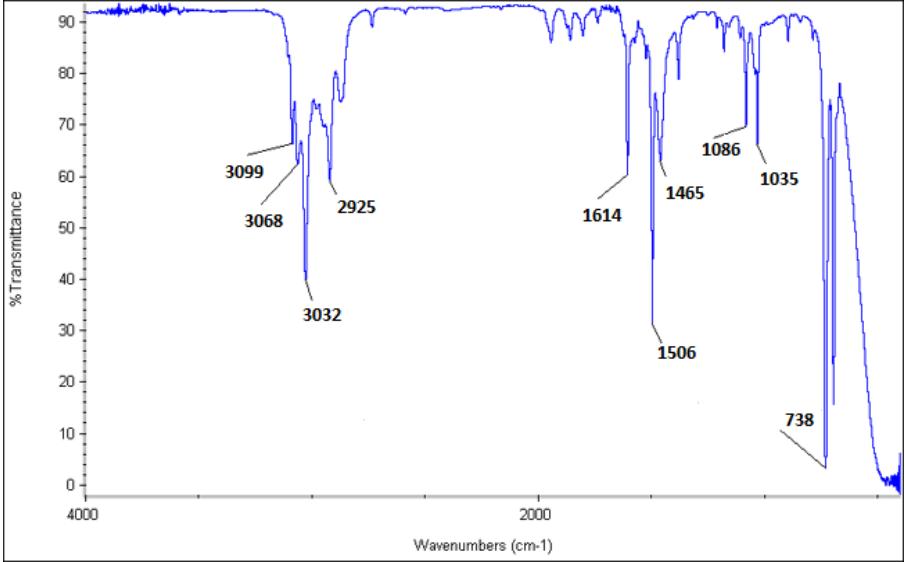
Branch: Institutional Elective

Course Code: 22ME6OEMAC

Course: Material Characterization

Semester: VI

Duration: 3 hrs.


Max Marks: 100

Date: 07.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Draw relevant diagrams/graphs and give equations wherever necessary.
 4. Can carry and use IR spectroscopy/XRD handbook sealed by department.

UNIT - I									CO	PO	Marks																		
1	a)	Draw the following crystal conditions (i) Hexagonal (ii) Simple Orthorhombic (iii) FCC (iv) 100 (v) 110 (vi) 111							<i>CO1</i>	<i>PO1</i>	06																		
	b)	Explain the working and construction of x-ray generation tube.							<i>CO1</i>	<i>PO1</i>	06																		
	c)	Explain the generation of continuous and characteristic spectra of X-ray.							<i>CO1</i>	<i>PO1</i>	08																		
OR																													
2	a)	The 2θ values for the powder diffraction peaks of a substance is given below:							<i>CO6</i>	<i>PO2</i>	08																		
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Peak No.</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td></tr> <tr> <td>2θ, deg</td><td>36.7</td><td>42.67</td><td>61.85</td><td>74.1</td><td>77.98</td><td>93.3</td><td>104.76</td><td>108.66</td></tr> </table>								Peak No.	1	2	3	4	5	6	7	8	2θ, deg	36.7	42.67	61.85	74.1	77.98	93.3	104.76	108.66		
Peak No.	1	2	3	4	5	6	7	8																					
2θ, deg	36.7	42.67	61.85	74.1	77.98	93.3	104.76	108.66																					
		<p>The patterns are obtained using Cu - $K\alpha$ radiation ($\lambda = 1.542 \text{ \AA}$). (i) Identify the crystal structure, (ii) Index the patterns, (iii) Determine the d-spacing, and (iv) Calculate the lattice parameter.</p>																											
	b)	Explain any four factors that influence the diffracted X-ray intensity.							<i>CO1</i>	<i>PO1</i>	08																		
	c)	Mention X-ray diffraction methods and their diffraction conditions (X-ray type, wavelength, Bragg angle).							<i>CO1</i>	<i>PO1</i>	04																		
UNIT - II																													
3	a)	Describe the structure and working of transmission electron microscope (TEM).							<i>CO2</i>	<i>PO1</i>	08																		
	b)	Explain bright-field and dark-field imaging modes in TEM.							<i>CO2</i>	<i>PO1</i>	10																		
	c)	Mention any two TEM specimen preparation technique used for non-conductive specimens.							<i>CO2</i>	<i>PO1</i>	02																		
OR																													

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

4	a)	Explain secondary electron and back-scattered electron modes of imaging in scanning electron microscope (SEM).	CO2	PO1	08
	b)	Explain the effect of working distance and spot size on SEM imaging.	CO2	PO1	08
	c)	Write a note on dehydration specimen preparation technique in SEM.	CO2	PO1	04
		UNIT - III			
5	a)	Explain the interpretation of thermogravimetry curves.	CO3	PO1	08
	b)	Explain the structure and working of dynamic mechanical thermal analyzer (DMA). Mention any two applications of DMA.	CO3	PO1	10
	c)	Define viscoelastic materials. Mention one of its significances in industry.	CO3	PO1	02
		UNIT - IV			
6	a)	Discuss the structure and working of double beam infrared (IR) spectroscopy. Mention any two techniques for reflectance/emission measurements	CO4	PO1	08
	b)	Index the significant peaks (at least five) of IR spectrum below, and comment on the plausible structure of molecule.	CO6	PO2	06
	c)	Explain the atomization process in flame atomic absorption spectrometry.	CO4	PO1	06
		UNIT - V			
7	a)	Explain the structure and working of x-ray photoelectron spectroscopy (XPS).	CO5	PO1	08
	b)	Draw six differences between scanning tunneling microscope and atomic force microscope (AFM).	C5	PO1	06
	c)	Discuss any six differences between SEM and AFM.	CO5	PO1	06
