

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

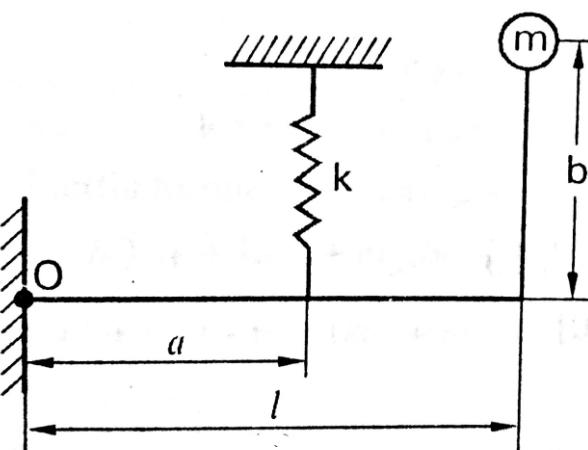
July 2023 Semester End Main Examinations

Programme: B.E.

Branch: Mechanical Engineering

Course Code: 20ME6DCMEV / 16ME6DCMEV

Course: Mechanical Vibrations


Semester: VI

Duration: 3 hrs.

Max Marks: 100

Date: 10.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	The solution to the differential equation for single degree freedom motion is given by $x=X\cos(100t+\phi)$ with initial condition $\dot{x}_{(0)} = 1250$ mm/sec and $x_{(0)} = 0.25$ mm find the values of X and ϕ , express the given equation in the form of $x=Asin\omega_nt+Bcos\omega_nt$	CO1	PO1	10
	b)	Determine the differential equation of motion of the system shown in fig1b, where the moment of inertia of the mass m and the bar about the pivot point is I_0 . Also show that the system becomes unstable when $b \geq \frac{ka^2}{mg}$.	CO1	PO2	10
 figure 1b					
UNIT - II					
2	a)	Set up differential equation for spring-mass-damper system and obtain the complete solution for critically damped condition.	CO2	PO2	10
	b)	Find the response of the system shown in fig 2b if block of mass m pulled down by 0.15m and then released from rest. Take $m=2$ kg, $k_1=0.5$ N/m, $k_2=0.25$ N/m, $c=0.5$ N-s/m.	CO2	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

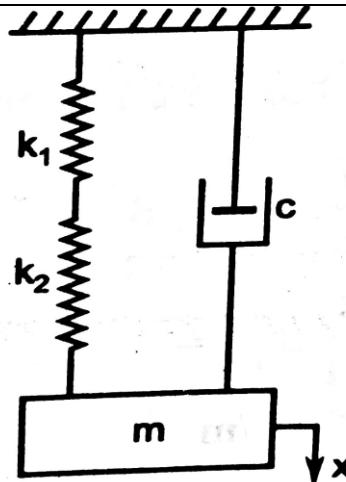


figure 2b

UNIT - III

3	a)	Analyze the under damped system subjected to constant harmonic excitation and obtain the complete solution.	CO2	PO2	10
---	----	---	-----	-----	-----------

	b)	A centrifugal fan weighs 430N and has a rotating unbalance of 225 N-cm. when dampers having damping factor $\xi=0.2$ are used, specify the springs for mounting such that only 10% of the unbalanced force is transmitted to the floor. Also determine the magnitude of transmitted force. The fan is running at a constant speed of 1000 rpm.	CO2	PO2	10
--	----	--	-----	-----	-----------

OR

4	a)	Derive an expression for the critical speed of light shaft with single disc with damping.	CO2	PO1	10
---	----	---	-----	-----	-----------

	b)	A shaft carrying a rotor of mass 50 kg and eccentricity 2 mm rotates at 12000rpm. Determine <ol style="list-style-type: none"> steady state whirl amplitude maximum whirl amplitude during startup conditions of the system. Assume stiffness of the shaft as 40×10^6 N/m and external damping ratio as 0.1	CO2	PO1	10
--	----	--	-----	-----	-----------

UNIT - IV

5	a)	Formulate an expression for the natural frequency, draw mode shapes and locate the node for system shown in Figure 5a subjected to vibration.	CO3	PO2	10
---	----	---	-----	-----	-----------

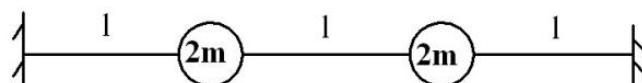


Fig 5a

	b)	What are vibration absorber? Show that spring force of the absorber system is equal and opposite to the exciting force when the main system is stationary.	CO3	PO1	10
--	----	--	-----	-----	-----------

UNIT - V

6 a) Determine the influence coefficient of the system shown in figure 6a.

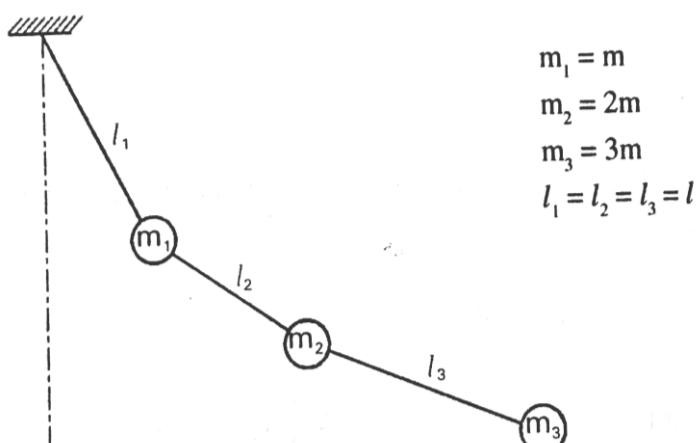


figure 6a

b) Using stodala's method, determine the lowest natural frequency of the torsional system shown in figure 6b.

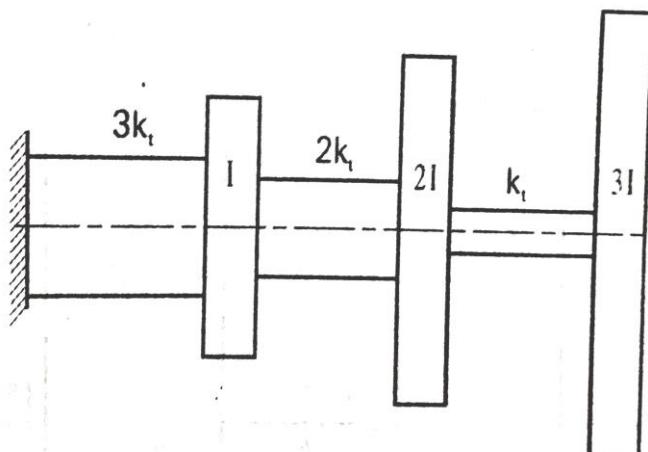
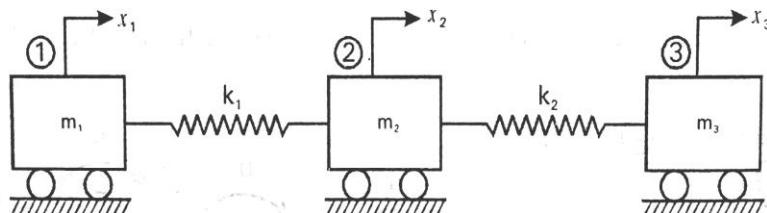



figure 6b

OR

7 a) Determine the natural frequency and the mode shapes of the system shown in figure 7a by Holzer's method

$$m_1=2\text{kg}, m_2=4\text{kg}, m_3=2 \text{ kg}, k_1=5 \text{ N/m}, k_2= 10\text{N/m}$$

Figure 7a

b) State and prove Maxwell's reciprocal theorem with usual notations.

CO4

PO2

08

CO4

PO2

12

CO4

PO2

15
