

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

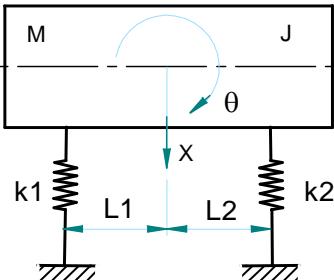
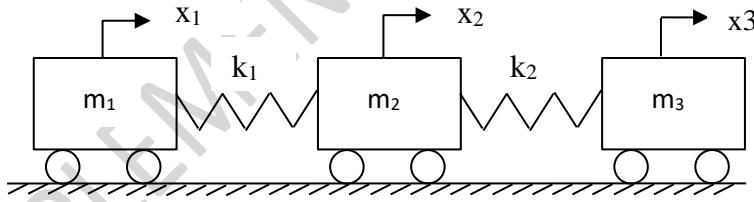
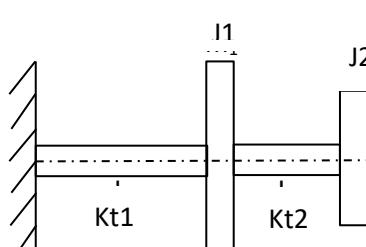
Programme: B.E.

Semester: VI

Branch: Mechanical Engineering

Duration: 3 hrs.

Course Code: 22ME6PCMEV / 20ME6DCMEV




Max Marks: 100

Course: Mechanical Vibrations

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Mention and explain in detail classification of vibrations.	CO1	PO2	08
	b)	A spring mass system has spring constant of k N/m and the mass W kg. It has a natural frequency of vibration as 12 c. p. s. An extra 2 kg mass is coupled to W and natural frequency reduces by 2 c. p. s. Find k and W .	CO1	PO2	08
	c)	Derive the natural frequency expression for a system having a rotor of mass moment of Inertia I connected to a shaft (at its end) of torsional stiffness k_T twisted by an angle θ . What would the frequency equation be if the torsional stiffness of the shaft is reduced by 50%.	CO1	PO2	04
UNIT - II					
2	a)	Define logarithmic decrement and derive an expression for logarithmic decrement. State the significance of the logarithmic decrement.	CO2	PO1	10
	b)	A vibrating system is defined by the following parameters: $m = 3$ kg, $k = 100$ N/m, $C = 3$ N-s/m. Determine: i) Damping factor (ii) Frequency of damped vibrations (iii) Logarithmic decrement (iv) Ratio of successive amplitudes (v) Number of cycles after which the original amplitude is reduced by 20%.	CO2	PO2	10
UNIT - III					
3	a)	What are frequency response curves? With a neat sketch, explain the salient features.	CO3	PO2	10
	b)	A machine having a mass of 100 kg and supported on springs of total stiffness 7.84×10^5 N/m has an unbalanced rotating element which results in a disturbing force of 392 N at a speed of 3000 rpm. Assuming a damping factor of 0.2, determine, i) The amplitude of motion due to unbalance ii) The transmissibility iii) The transmitted force	CO3	PO3	10
OR					
4	a)	Sketch and explain the vector diagram for a forced vibration system for the following operating conditions: i) $\omega \ll \omega_n$ ii) $\omega = \omega_n$ iii) $\omega \gg \omega_n$	CO3	PO2	12

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>A machine part of mass 4kg suspended in a viscous medium. A harmonic exciting force of 40 N acts on the machine and causes a resonant amplitude of 15 mm with a period of 0.2 seconds. Determine the damping coefficient.</p> <p>If the system is excited by a harmonic force of frequency 4 Hz, what will be the percentage increase in the amplitude of forced vibration when damper is removed.</p>	CO3	PO3	08
		UNIT – IV			
5	a)	Explain principal modes and normal modes of vibration of two-degree undamped system.	CO4	PO2	06
	b)	Fig. 5(b) shows an automobile chassis model with two degrees of freedom X and Θ . Determine the two natural frequencies.	CO4	PO3	14
		<p>Fig. 5(b)</p>			
		UNIT – V			
6		Determine the natural frequency and the mode shape of the system shown in figure below, by Holzer's method. Take $m_1=2\text{kg}$, $m_2=4\text{kg}$, $m_3=2\text{kg}$, $k_1=5\text{N/m}$, $k_2=10\text{N/m}$.	CO5	PO2	20
		OR			
7	a)	Write a short note on (i) Influence co-efficient (ii) Orthogonality Principle.	CO5	PO1	06
	b)	Use Stodola's method to find the natural frequency of the system shown below.	CO5	PO2	14
