

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July / August 2024 Semester End Main Examinations

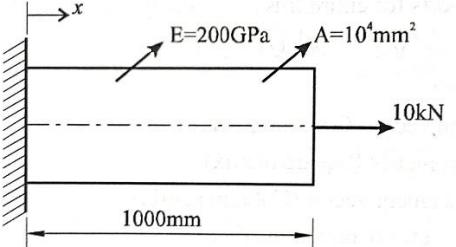
Programme: B.E.

Branch: Mechanical Engineering

Course Code: 20ME6DCMFE

Course: Modelling and Finite Element Analysis

Semester: VI


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	What are the basic steps involved in finite element method to solve mechanical engineering problems.	CO1	PO1	05
	b)	Explain the concept of plain stress and plain strain conditions.	CO1	PO1	05
	c)	Find the maximum deflection for following element in Fig.Q1(c), using Galerkin's approach.	CO1	PO2	10
Fig.Q1(c)					
OR					
2	a)	Describe the convergence criteria used for the displacement functions in FEM?	CO1	PO1	05
	b)	Derive the strain displacement relations for two-dimensional Element.	CO1	PO1	05
	c)	Using Rayleigh Ritz method, derive an equation for maximum deflection at the center using trigonometric function of a simply supported beam is subjected to uniformly distributed load P_0 N/m as shown in Fig.Q2(c)	CO1	PO2	10
Fig. Q2(c)					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
3	a)	Derive the shape function in natural coordinate system of 1D bar element.	CO2	PO1	05
	b)	Derive the stiffness matrix for a single element bar.	CO2	PO2	05
	c)	Determine the nodal displacement at loading point, reaction, strain and stress for 1D bar subjected to axial load as shown in Fig. Q2(c). Consider $P = 10 \text{ kN}$, $E = 200 \text{ GPa}$, $A = 0.01 \text{ m}^2$ and $L = 1 \text{ m}$.	CO2	PO2	10
 Fig. Q2(c)					
UNIT - III					
4	a)	For the truss element shown in Fig. Q4(a), determine the nodal displacement and stress in each member. Take $E = 200 \text{ GPa}$.	CO3	PO2	10
		 Fig. Q4(a)			
	b)	Define Hermite shape functions, also derive the stiffness matrix for beam elements using strain energy concept.	CO3	PO1	10
UNIT - IV					
5	a)	Define isoparametric, sub parametric and super parametric Element with sketch.	CO4	PO1	06
	b)	Derive shape function for Triangular element in Natural Co-ordinates system.	CO4	PO1	08
	c)	What is the axisymmetric elements? Derive Jacobian for Axisymmetric triangular element.	CO4	PO1	06
		OR			
6	a)	Explain 2-D Pascal's Triangle.	CO4	PO1	05

	b)	Derive shape function for Rectangular element in Natural Co-ordinates system.	CO4	PO1	09
	c)	Derive shape function for quadratic bar element using Lagrange interpolation Method.	CO4	PO1	06
		UNIT - V			
7	a)	Derive differential equation for an 1D heat condition problem.	CO4	PO1	05
	b)	An induction furnace wall is made up of three layers, inside, middle and other layer with thermal conductivity k_1 , k_2 , k_3 respectively as shown in Fig Q 7(b). Determine the nodal temperature.	CO4	PO2	09
	c)	Derive the conductivity Matrix for 1 D bar element.	CO4	PO1	06

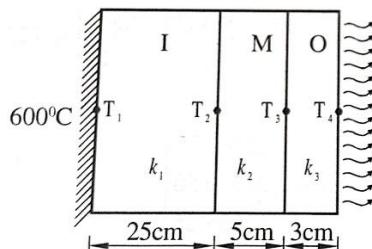


Fig Q 7(b)

$$\begin{aligned}
 k_1 &= 8.5 \text{ W/mK} \\
 k_2 &= 0.25 \text{ W/mK} \\
 k_3 &= 0.08 \text{ W/mK} \\
 h &= 45 \text{ W/m}^2\text{K} \\
 T_\infty &= 30^\circ\text{C}
 \end{aligned}$$
