

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

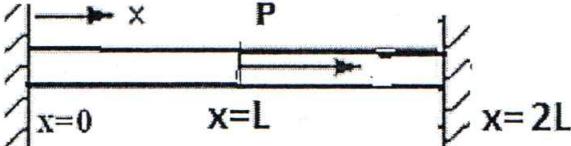
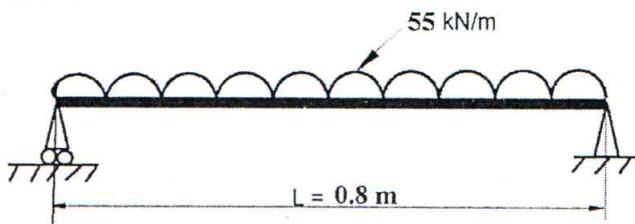
July 2023 Semester End Main Examinations

Programme: B.E.

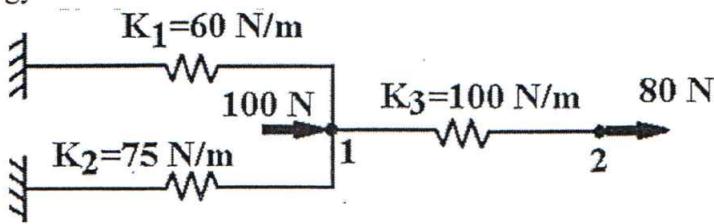
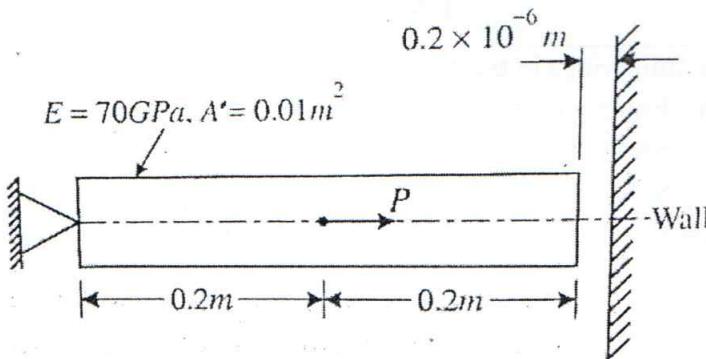
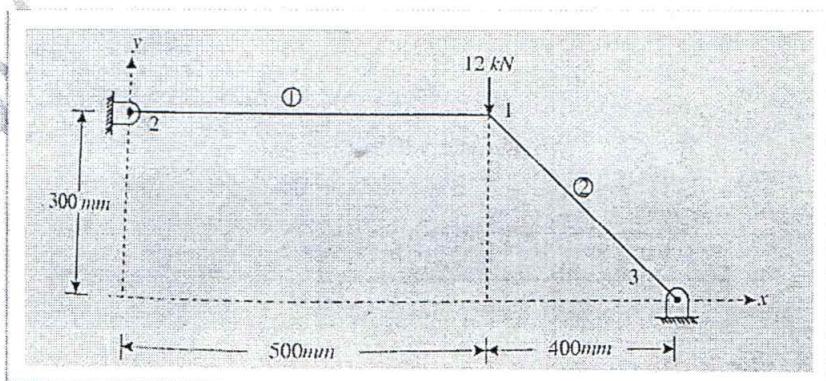
Branch: Mechanical Engineering

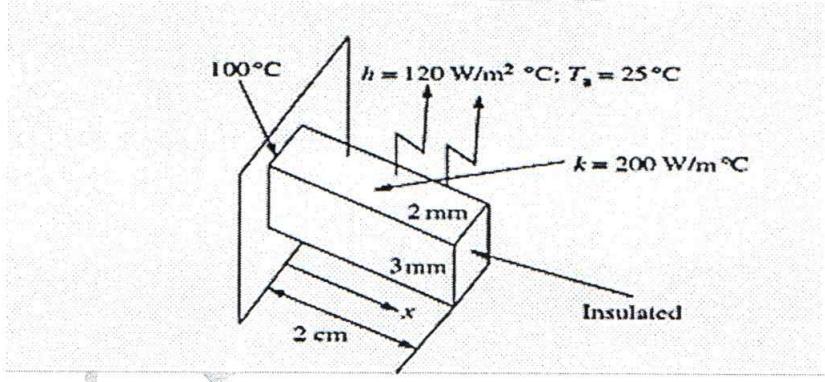
Course Code: 20ME6DCMFE / 16ME6DCMFE

Course: Modelling and Finite Element Analysis



Semester: VI

Duration: 3 hrs.




Max Marks: 100


Date: 05.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Write the followings in matrix form:</p> <ol style="list-style-type: none"> Equilibrium equations in 3D Strain - displacement relations in 3D Stress - strain relations in 3D Stress-strain relations for Plane stress condition 	CO1	PO1	08
	b)	<p>Using the Rayleigh-Ritz method, obtain expressions for displacement and stress for the uniform bar shown in the figure 1b. Normalize the values if $P=A=L=E=1$</p>	CO2	PO2	10
	c)	Define Principal of Minimum Potential Energy	CO2	PO1	02
OR					
2	a)	<p>Evaluate the following integral with suitable Gauss quadrature. Verify the answer with an analytical solution.</p> <p>a) $I = \int_0^3 (1 + 2r + 3r^2 + 4r^3) dr$</p>	CO2	PO1	06
	b)	<p>Determine the Maximum deflection for the simply supported beam shown in the figure using R-R method. Take $E=210\text{GPa}$ and $I=2 \times 10^{-9}\text{m}^4$</p>	CO2	PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	<p>Determine the nodal displacements for the following spring system shown in figure 1c, using principle of minimum potential energy.</p>	CO2	PO1	04
		figure 1c			
		UNIT - II			
3	a)	Derive the element stiffness matrix for a 2 nodded bar element with 2 DOFs at each node.	CO2	PO1	08
	b)	Determine the displacement, stress and support reactions in the bar subjected to an axial load $P=1000N$ as shown in figure 3b.	CO4	PO2	12
		UNIT - III			
4	a)	Derive Hermitian shape function for a beam and sketch their variation.	CO2	PO1	08
	b)	Obtain displacements at node 1, reactions at nodes 2 and 3, and stresses and strains in the truss shown in Figure 2.(b) take $E=70Gpa$, $A=200mm^2$.	CO4	PO2	12
		Figure 4b			
		UNIT - IV			
5	a)	Sketch 2D constant strain element indicating the degrees of freedom. Compute expressions	CO3	PO1	12

		i) Shape functions, ii) Jacobean & iii) Strain displacement matrix			
	b)	A CST element has coordinates 1(0, 0), 2(250, 0) and 3(250, 250) and thickness 5 mm. If the element displacement vector is given by $\{0,0, 0.001, 0.002, -0.003, 0.002\}^T$ mm determine the element strain .	CO4	PO1	08
		OR			
6	a)	Formulate the shape function for 1-D quadratic Bar elements and sketch their variations.	CO2	PO1	06
	b)	Discuss Iso, Sub and Super-parametric elements.	CO2	PO1	06
	c)	Sketch 9-noded quadrilateral elements and Write the shape functions for the same.	CO3	PO1	08
		UNIT - V			
7	a)	Derive shape function for 2-noded one dimensional heat transfer element in global coordinates.	CO3	PO1	06
	b)	Determine the temperature distribution in the rectangular fin shown in Figure 7b. Use two 2 nodded 1d heat transfer elements. Also, interpolate the results and obtain temperatures at 0.005m	CO4	PO2	14
		<p>figure 7b</p>			
