

B.M.S. College of Engineering, Bengaluru-560019

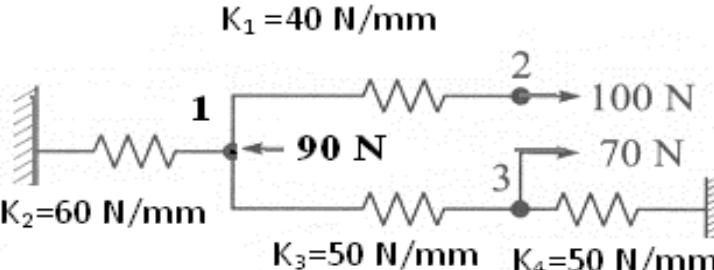
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

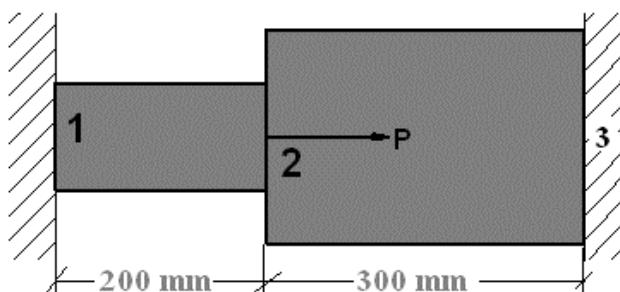
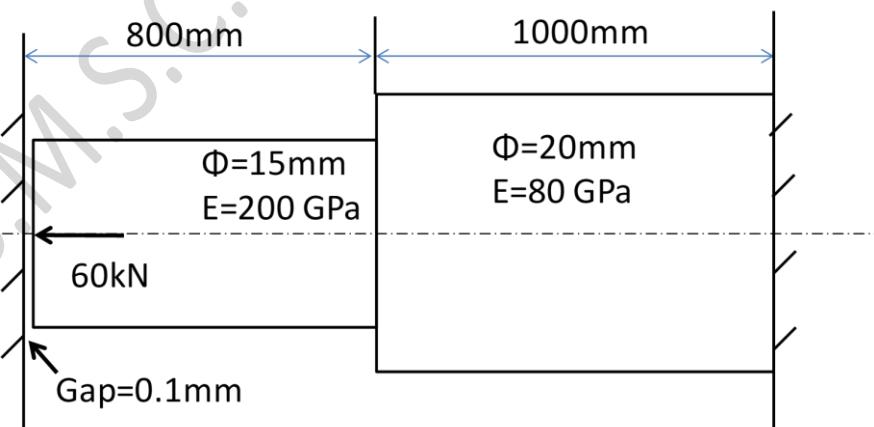
Semester: V/VI

Branch: Mechanical Engineering


Duration: 3 hrs.

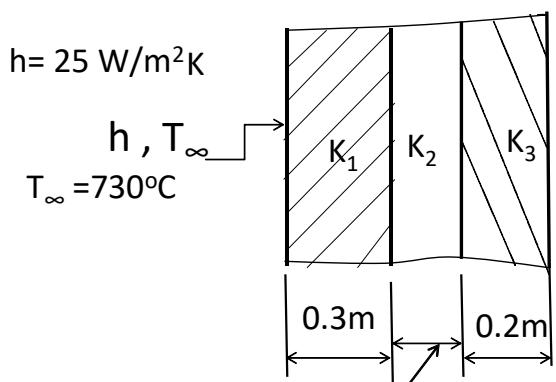
Course Code: 23ME6PCMFE/22ME5PCMFE/20ME6DCMFE

Max Marks: 100



Course: Modeling and Finite Element Analysis

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Differentiate plane stress and plane strain idealization with relevant sketch and equations.	CO1	PO1	06
	b)	Derive the equations of equilibrium for 2- dimensional loading.	CO1	PO2	07
	c)	For the following spring system shown in Figure-1, estimate the displacements at nodes 1, 2 & 3.	CO1	PO2	07
<p>Figure-1</p>					
OR					
2	a)	Using Rayleigh-Ritz method, estimate the deflection in a beam of length 'L' fixed at both the ends and applied with an UDL of P_0 N/mm through the length. Young's modulus is E and Inertia is I .	CO1	PO2	12
	b)	Write the equations for the following stresses i) Principal normal stresses in 2D ii) Maximum Shear Stress in 2D iii) Von-mises stress in 3D	CO1	PO1	04
	c)	List any five applications of FE method in engineering	CO1	PO1	04



Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II

3	a)	Write the shape functions for a linear bar element. Sketch their variation across the element.	CO2	PO1	04
	b)	What is global stiffness matrix? List its properties.	CO2	PO1	04
	c)	Determine the displacement at the mid-node and element stresses for the stepped bar shown in Figure-2. The load acting $P=300 \text{ kN}$ and the bar is subjected to a temperature increase of 40°C . Also estimate the nodal reactions. $\alpha_1 = 23 \times 10^{-6} \text{ per } {}^{\circ}\text{C}$ $\alpha_2 = 11.7 \times 10^{-6} \text{ per } {}^{\circ}\text{C}$ $E_1 = 70 \times 10^9 \text{ N/m}^2$ $E_2 = 200 \times 10^9 \text{ N/m}^2$ $A_1 = 900 \text{ mm}^2$ $A_2 = 1200 \text{ mm}^2$	CO3	PO2	12
		Figure-2			
		OR			
4	a)	Describe penalty approach of handling boundary conditions. Indicate the solution equations.	CO2	PO2	08
	b)	For the stepped bar shown in Figure-3, estimate the nodal displacements, element strains and stresses. Also determine the reactions. Use penalty method for handling BCs.	CO3	PO2	12
		Figure-3			
		UNIT - III			
5	a)	What are Hermite shape functions? Sketch their physical forms and give the equations.	CO2	PO1	08

	b)	<p>For the two-member truss shown in Figure-4, estimate the nodal displacements at node 2. Also determine the element strains and stresses. Take $E=200$ GPa.</p> <p>Figure-4</p>	CO3	PO2	12
		OR			
6	a)	<p>For the beam shown in Figure-5, estimate the slope/rotation at the roller supports. Take $E=200$ GPa, $I=5 \times 10^{-6}$ m⁴.</p> <p>Figure-5</p>	CO3	PO2	15
	b)	<p>Derive the stiffness matrix for a truss element from the stiffness matrix of bar element.</p>	CO2	PO2	05
		UNIT - IV			
7	a)	<p>Derive the Jacobian matrix for a constant strain triangular element and hence obtain the strain-displacement matrix.</p>	CO2	PO2	12
	b)	<p>Differentiate the following element formulations: Sub-parametric, iso-parametric and super-parametric.</p>	CO2	PO1	06
	c)	<p>Write any two differences between 1-dimensional and 2-dimensional elements.</p>	CO2	PO1	02
		OR			
8	a)	<p>Write the shape functions for the following elements:</p> <ol style="list-style-type: none"> Quadrilateral element with four nodes. Quadrilateral element with eight nodes 	CO2	PO1	08
	b)	<p>Write the Pascal triangle used for selection of polynomial terms.</p>	CO2	PO1	06
	c)	<p>What is FE solution convergence? How is it achieved?</p>	CO2	PO1	06

UNIT - V

9	a)	Derive the governing equation for 1-D heat condition.	CO2	PO1	05	
	b)	For the composite wall of the furnace shown in Figure-6, convection heat transfer takes place at the inner side with heat transfer coefficient of $25 \text{ W/m}^2\text{K}$. Determine the temperature distribution in the wall.	CO3	PO2	15	
		<p>$h = 25 \text{ W/m}^2\text{K}$</p> <p>$T_\infty = 730^\circ\text{C}$</p> <p>$T_0 = 25^\circ\text{C}$</p> <p>$K_1 = 5 \text{ W/mk}$</p> <p>$K_2 = 40 \text{ W/mk}$</p> <p>$K_3 = 10 \text{ W/mk}$</p>				
		Figure-6				
		OR				
10	a)	Illustrate the variations of shape functions used in the formulation of one-dimensional thermal element.	CO2	PO1	06	
	b)	Determine the temperature distribution in one dimensional fin shown in Figure-7. The uniform heat generation inside the wall is 500 W/m^3 .	CO3	PO2	14	
		<p>$\bar{q} = 500 \text{ W/m}^3$</p> <p>$d = 0.02 \text{ m}$</p> <p>$T = 90^\circ\text{C}$</p> <p>$k = 400 \text{ W/m}^\circ\text{C}$</p> <p>Insulator</p>				
		Figure-7				
