

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Branch: Mechanical Engineering

Course Code: 20ME6DEROB

Course: Fundamentals of Robotics

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Date: 17.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

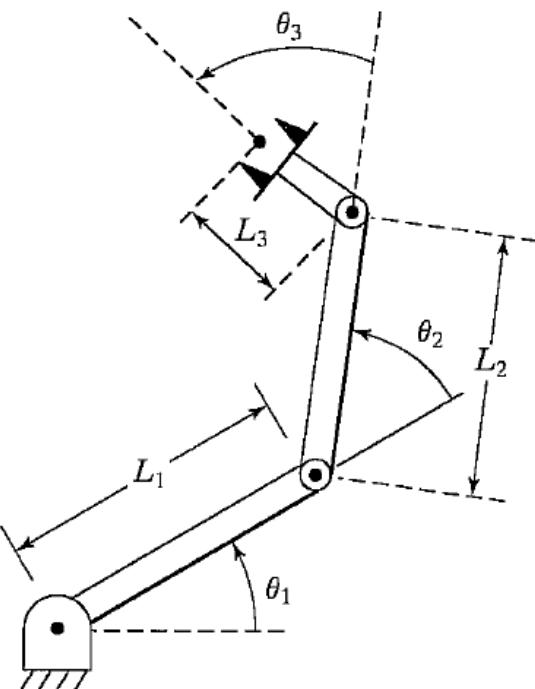

UNIT - I			CO	PO	Marks
1	a)	A vector ${}^A P$ is rotated about \hat{X}_A by 90 degrees and is subsequently rotated about \hat{Y}_A by 90 degrees. Give the rotation matrix that accomplishes these rotations in the given order.	CO1	PO2	10
	b)	List the properties of rotation matrix and show that the matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$ is a valid rotation matrix.	CO1	PO1	10
OR					
2	For the planar 3R manipulator shown in Fig. 2, assign link frames, give the DH parameters and find the transformation matrices ${}^0 T$, ${}^1 T$, ${}^2 T$, ${}^3 T$, ${}_{Tool}{}^3 T$ and ${}_{Tool}{}^0 T$.			CO2	PO2
<p>Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.</p>					20

Fig. 2

		Hint: ${}_{i-1}^i T = \begin{bmatrix} c\theta_i & -s\theta_i & 0 & a_{i-1} \\ s\theta_i c\alpha_{i-1} & c\theta_i c\alpha_{i-1} & -s\alpha_{i-1} & -s\alpha_{i-1} d_i \\ s\theta_i s\alpha_{i-1} & c\theta_i s\alpha_{i-1} & c\alpha_{i-1} & c\alpha_{i-1} d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}.$			
		UNIT - II			
3	a)	<p>Perform the inverse kinematics for the Planar 3R manipulator using analytic approach. The position and orientation of the wrist frame (3) relative to the base frame (0) is given by the transformation matrix ${}^0 T = \begin{pmatrix} c_{123} & -s_{123} & 0 & l_1 c_1 + l_2 c_{12} \\ s_{123} & c_{123} & 0 & l_1 s_1 + l_2 s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. If the desired position and orientation of the wrist frame is given by $\begin{pmatrix} c\phi & -s\phi & 0 & x \\ s\phi & c\phi & 0 & y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ find the joint angles.</p>	CO2	PO2	10
	b)	Discuss about workspace of a robot and its types with examples.	CO2	PO1	10
		OR			
4	a)	<p>For the SCARA robot the position and orientation of the last link is given by ${}^0 T = \begin{pmatrix} c_{124} & -s_{124} & 0 & a_1 c_1 + a_2 c_{12} \\ s_{124} & c_{124} & 0 & a_1 s_1 + a_2 s_{12} \\ 0 & 0 & 1 & -d_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. Derive the 6x6 basic Jacobian that relates the joint velocities and end effector velocities.</p>	CO2	PO1	10
	b)	Discuss resolved motion rate control with a block diagram.	CO2	PO1	10
		UNIT - III			
5	a)	A single robot with a rotary joint is motionless at $\theta = -5$ degrees. It is desired to move the joint in a smooth manner to $\theta = 80$ degrees in 4 seconds. Find the coefficients of a cubic that accomplishes this motion and brings the manipulator to rest at the goal. Also sketch the position, velocity and acceleration of the joint as a function of time.	CO3	PO2	10
	b)	Discuss about cartesian path planning and geometric problems associated with it.	CO3	PO1	10
		UNIT - IV			
6	a)	Explain inverse kinematics based independent joint control scheme of a robot manipulator with a block diagram.	CO4	PO1	10

	b)	Explain how a single joint of a robot can be controlled with the partitioned controller along with the equations. State the assumptions involved.	CO4	PO1	10
UNIT - V					
7	a)	Explain the working principle of DC servo motor with neat sketches.	CO4	PO1	10
	b)	Explain the working principle of optical encoder with neat sketches.	CO4	PO1	10

B.M.S.C.E. - EVEN SEM 2022-23