

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Institutional Elective

Duration: 3 hrs.

Course Code: 23ME6OEROB

Max Marks: 100

Course: Fundamentals of Robotics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	A vector ${}^A P$ is rotated about \hat{Z}_A by θ degrees and is subsequently rotated about \hat{Y}_A by ϕ degrees. Give the rotation matrix that accomplishes these rotations in the given order.	CO1	PO1	10
	b)	Explain the various robot configurations with neat diagrams.	CO1	PO1	10
OR					
2	a)	Obtain the equations to compute the position and the orientation of frame {3} relative to a frame {0} for PUMA 560 robot arm. Show the frame assignments and DH table. Transformation matrix for the link is as follows: ${}^{i-1} T^i = \begin{bmatrix} c\theta_i & -s\theta_i & 0 & a_{i-1} \\ s\theta_i c\alpha_{i-1} & c\theta_i c\alpha_{i-1} & -s\alpha_{i-1} & -s\alpha_{i-1} d_i \\ s\theta_i s\alpha_{i-1} & c\theta_i s\alpha_{i-1} & c\alpha_{i-1} & c\alpha_{i-1} d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$	CO2	PO2	20
UNIT - II					
3	a)	What is meant by a singularity in robotics? Describe its types with appropriate examples.	CO2	PO2	10
	b)	Consider the two-link robot shown here, as it is moving its end-effector along the X axis at 1.0 m/s as shown in Fig. 3b. Show that joint rates are reasonable when far from a singularity, but that, as a singularity is approached at $\theta_2 = 0$, joint rates tend to infinity.	CO2	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

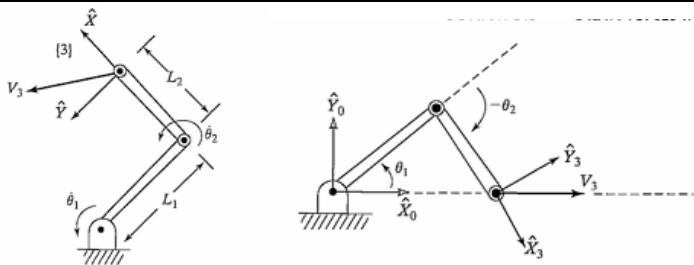


Fig. 3b

OR

4 a) Discuss the solvability of the inverse kinematics problem.

CO2 *PO2* **10**

b) Perform the inverse kinematics for a SCARA robot.

CO2 *PO2* **10**

UNIT - III

5 a) A single-link robot with a rotary joint is motionless at $\theta = -5^\circ$. It is desired to move the joint in a smooth manner to $\theta = 80^\circ$ in 4 seconds. Find the coefficients of a cubic which accomplishes this motion and brings the arm to rest at the goal. Plot the position, velocity, and acceleration of the joint as a function of time.

CO3 *PO3* **10**

b) Discuss Cartesian path planning and geometric problems associated with it, using neat sketches.

CO3 *PO1* **10**

OR

6 a) A single-link robot with a rotary joint is motionless at $\theta = -5^\circ$. It is desired to move the joint in a smooth manner to $\theta = 80^\circ$ in 4 seconds and stop smoothly. Compute the corresponding parameters of a linear trajectory with parabolic blends. Plot the position, velocity, and acceleration of the joint as a function of time.

CO3 *PO3* **10**

b) How many individual cubics are computed when a six-jointed robot moves along a cubic spline path through two via points and stops at a goal point? How many coefficients are stored to describe these cubics?

CO3 *PO1* **10**

UNIT - IV

7 a) Discuss the architecture of PUMA 560 robot controller.

CO3 *PO3* **10**

b) Discuss the resolved motion rate robot control scheme with a block diagram.

CO3 *PO3* **10**

OR

8 a) Discuss how a single joint of a robot can be controlled with appropriate equations.

CO3 *PO3* **10**

b) Show how PID control eliminates steady-state error in trajectory tracking control.

CO3 *PO3* **10**

UNIT - V					
	9	a)	List and explain the required characteristics of a sensor used in robots.	<i>CO4</i>	<i>PO3</i>
		b)	Explain with a neat diagram the working principle of tactile sensors mounted on the actuators/grippers.	<i>CO4</i>	<i>PO1</i>
OR					
	10	a)	Discuss the working principle of a stepper motor with neat sketches.	<i>CO4</i>	<i>PO3</i>
		b)	Discuss any modern actuator used in robotics with an example application.	<i>CO4</i>	<i>PO1</i>

B.M.S.C.E. - EVEN SEM 2024-25