

B.M.S. College of Engineering, Bengaluru-560019

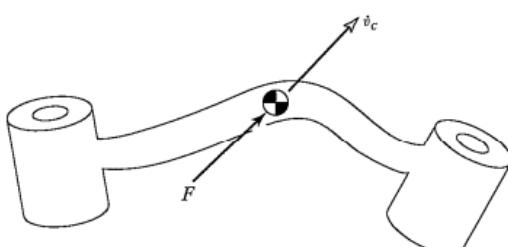
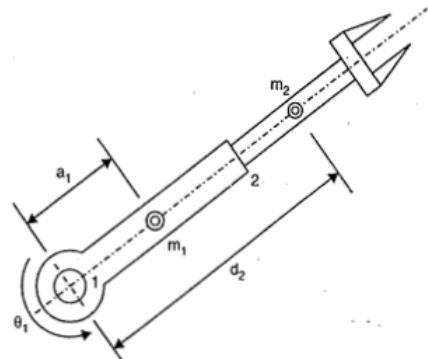
Autonomous Institute Affiliated to VTU

January 2024 Semester End Main Examinations

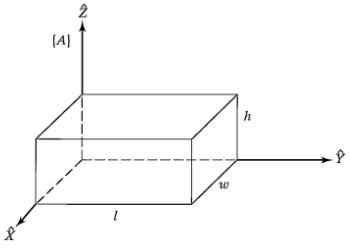
Programme: B.E.

Branch: Mechanical Engineering

Course Code: 20ME7DEARB



Course: Advanced Robotics

Semester: VII


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Illustrate Newton's Equation and Euler's Equation for a rigid body shown in Fig 1.a. where, force F acting at the center of mass of a body causes the body to accelerate at \ddot{v}_c</p> <p>Fig 1.a</p>	CO1	PO3	08
	b)	<p>Using L-E formulation determine the equation of motion for RP manipulator shown in Fig 1.b.</p> <p>Fig 1.b</p>	CO2	PO4	12
OR					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

2	a)	<p>Find the inertia tensor for the rectangular body of uniform density ρ with respect to the coordinate system shown in Fig. 2.a</p> <p>Fig. 2.a</p>	CO2	PO4	10
	b)	<p>The force and the torque in the base coordinate frame is given by</p> $f = 10i + 0j + 0k$ $m = 0i + 10j + 0k$ <p>Determine the force and the torque at the tool tip frame described by</p> $A = \begin{bmatrix} 0 & 0 & 1 & 10 \\ 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	CO1	PO3	10
UNIT - II					
3	a)	Explain how a feed-forward Control System works by highlighting its advantages and disadvantages.	CO3	PO2	10
	b)	With a block diagram, explain adaptive control system. Explain its advantages over the conventional system.	CO3	PO2	10
OR					
4	a)	Explain in detail PCB design considerations for feedforward control systems.	CO3	PO3	10
	b)	Discuss the implementation of the Cartesian model-based control scheme.	CO3	PO3	10
UNIT - III					
5	a)	<p>Explain the following segmentation techniques</p> ol type="i"> Edge detection Region growing	CO4	PO2	10
	b)	What is object recognition? Explain template matching and structure technique using block diagram of a Cartesian-based decoupling and linearizing controller.	CO4	PO2	10
UNIT - IV					
6	a)	Discuss desirable features for sensors of industrial robot.	CO5	PO3	10
	b)	<p>Write a note on following in relation with its application in robot.</p> ol type="i"> Pulse Width Modulation Directional control with H-Bridge.	CO5	PO4	10

UNIT - V						
7		In the automotive industry, vehicle fog lights have previously been adjusted manually by human operators. Presently a sensitive robot adjusts the fog light fully automatically. Discuss a case study on “Assisted human-robot interaction during headlamp calibration describing concept that can be adopted.”		<i>CO6</i>	<i>PO5</i>	20

B.M.S.C.E. - ODD SEM 2023-24