

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Mechanical Engineering

Duration: 3 hrs.

Course Code: 20ME7BSBFE / 23ME7BSBFE

Max Marks: 100

Course: Biology for Engineers

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Discuss the different types of chemical bonds with relevant sketches and examples.	<i>CO1</i>	<i>PO1</i>	10
	b)	Explain how protein structure is formed through peptide bonds.	<i>CO1</i>	<i>PO1</i>	10
OR					
2		Discuss the different transport mechanisms across the cell membrane with neat sketches.	<i>CO1</i>	<i>PO1</i>	20
UNIT - II					
3	a)	Discuss bone strength and how it adapts to an increase in load. How can this knowledge help prevent bone diseases?	<i>CO1</i>	<i>PO1</i>	12
	b)	Discuss the factors affecting bone growth and maintenance.	<i>CO1</i>	<i>PO1</i>	08
OR					
4	a)	Explain the structure of a long bone with a neat sketch.	<i>CO1</i>	<i>PO1</i>	10
	b)	Discuss different types of bone fractures with neat sketches.	<i>CO1</i>	<i>PO1</i>	10
UNIT - III					
5		Draw a schematic of the Hill Muscle Model. Also, draw the Active Force-Length, Passive Force-Length, Force-Velocity, and Tendon Force-Length curves, and describe them.	<i>CO1</i>	<i>PO1</i>	20
OR					
6		With neat sketches explain the cross-bridge cycle and the sliding filament theory of muscular contraction.	<i>CO1</i>	<i>PO1</i>	20

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV					
	7		Explain how an impulse is conducted along the length of a neuron with neat sketches.	<i>CO1</i>	<i>PO1</i> 20
OR					
	8	a)	What is an electromyogram? Discuss its applications.	<i>CO1</i>	<i>PO1</i> 10
		b)	Discuss the structure of a neuron with a neat sketch.	<i>CO1</i>	<i>PO1</i> 10
UNIT - V					
	9		List five case studies of biomechanical engineering applications and explain any one in detail with appropriate sketches.	<i>CO2</i> <i>CO3</i>	<i>PO1</i> <i>PO3</i> 20
OR					
	10	a)	Discuss how muscle coordination retraining could reduce the risk of osteoarthritis.	<i>CO2</i> <i>CO3</i>	<i>PO1</i> <i>PO3</i> 10
		b)	Discuss the concept of an exoskeleton and its applications.	<i>CO2</i> <i>CO3</i>	<i>PO1</i> <i>PO3</i> 10

B.M.S.C.E. - ODD SEMESTER