

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January 2024 Semester End Main Examinations

Programme: B.E.

Branch: Mechanical Engineering

Course Code: 23ME7BSBFE

Course: Biology for Engineers

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	List and discuss any five applications showing how Biology is relevant to Mechanical Engineer.			<i>CO1</i>	<i>PO1</i>	10
		b)	How is blood glucose level regulation carried in the human body? Discuss with the help of a control systems block diagram.			<i>CO1</i>	<i>PO1</i>	10
OR								
	2	a)	Explain the various types of movements through Cell membranes.			<i>CO1</i>	<i>PO1</i>	10
		b)	Explain the different types of chemical reactions with an example. What are the factors that affect the reaction rate?			<i>CO1</i>	<i>PO1</i>	10
UNIT - II								
	3	a)	Classify Bone cells highlighting their function. Draw a schematic of the long bone labelling the various parts.			<i>CO1</i>	<i>PO1</i>	10
		b)	Discuss the types of bone fracture under various loading conditions.			<i>CO2</i>	<i>PO1</i>	10
UNIT - III								
	4	a)	Illustrate the <i>sliding-filament model</i> of muscle contraction (with necessary sketch).			<i>CO2</i>	<i>PO1</i>	10
		b)	Classify the types of muscles in a human body with a sketch and highlight their salient features.			<i>CO1</i>	<i>PO1</i>	10
OR								
	5	a)	Draw the structure of a myofibril highlighting the constituent of a sarcomere.			<i>CO1</i>	<i>PO1</i>	10
		b)	Discuss the Muscle Contraction and Relaxation theory with a simple sketch of neuromuscular junction.			<i>CO2</i>	<i>PO1</i>	10

UNIT - IV					
6	a)	Explain the mechanism of impulse conduction in a synapse with a neat sketch.	<i>CO1</i>	<i>PO1</i>	10
	b)	What are the applications of EMG in ergonomics? Discuss any one application.	<i>CO3</i>	<i>PO1</i>	10
UNIT - V					
7	a)	List at least FIVE applications of Bio-Mechanical Engineering and briefly explain the principle.	<i>CO3</i>	<i>PO1</i>	10
	b)	Discuss a case study where application of Bio-Mechanical Engineering has solved or mitigated human discomfort.	<i>CO3</i>	<i>PO1</i>	10

B.M.S.C.E. - ODD SEM 2023-24