

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January 2024 Semester End Main Examinations

Programme: B.E.

Branch: Mechanical Engineering

Course Code: 21ME7DEBHT

Course: Fundamentals of Boiling Heat Transfer

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
1	a)	Explain the importance of minimum boiling Azeotropic mixtures.		<i>CO1</i>	<i>PO1</i>			05
	b)	Explain the effect of wettability in boiling heat transfer.		<i>CO1</i>	<i>PO1</i>			05
	c)	What is meant by positive and negative deviation from Raoult's law of mixture? Explain with the help of suitable graphs.		<i>CO1</i>	<i>PO1</i>			10
OR								
2	a)	What are Zeotropic mixtures? Explain with the help of suitable graphs.		<i>CO1</i>	<i>PO1</i>			10
	b)	Explain the application of heat pipe in space applications and anti-icing in aeroplane wings.		<i>CO1</i>	<i>PO1</i>			10
			UNIT - II					
3	a)	What are the Coolants used in cooling of heat dissipative devices?		<i>CO2</i>	<i>PO1</i>			05
	b)	How to do you classify Boiling heat transfer?		<i>CO2</i>	<i>PO1</i>			05
	c)	What are the different dimensionless numbers used in boiling heat transfer? Also explain their significance.		<i>CO2</i>	<i>PO1</i>			10
			UNIT - III					
4	a)	Explain Boiling regimes in Horizontal flow and corresponding type of heat transfer involved during the flow.		<i>CO2</i>	<i>PO1</i>			10
	b)	Explain Augmentation techniques in flow boiling.		<i>CO2</i>	<i>PO1</i>			05
	c)	Explain Microgravity boiling in flow boiling heat transfer.		<i>CO2</i>	<i>PO1</i>			05
			UNIT - IV					
5	a)	Explain Bubbly flow, Slug flow, Churn flow, Annular and mist flow for vertical orientation.		<i>CO3</i>	<i>PO1</i>			10
	b)	Why do Homogenous and Heterogeneous nucleation happen in flow boiling?		<i>CO3</i>	<i>PO1</i>			10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR					
6	a)	Discuss Nucleation site density, bubble release frequency and bubble departure diameter?	<i>CO3</i>	<i>PO1</i>	10
	b)	Explain the experimental test set up of flow boiling with neat labelled diagrams	<i>CO3</i>	<i>PO1</i>	10
UNIT - V					
7	a)	Derive the continuity equation from basic scalar transport equation. What is bubble void fraction in boiling?	<i>CO4</i>	<i>PO1</i>	10
	b)	Derive the energy equation from Reynolds scalar transport equation.	<i>CO4</i>	<i>PO1</i>	10

B.M.S.C.E. - ODD SEM 2023-24