

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Mechanical Engineering

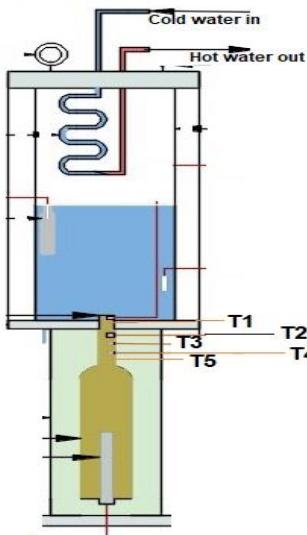
Duration: 3 hrs.

Course Code: 22ME7PEFBH

Max Marks: 100

Course: Fundamentals of Boiling Heat Transfer

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.


UNIT – I			CO	PO	Marks
1	a)	Describe the significance of minimum boiling azeotropic mixtures in refrigeration industry.	<i>CO1</i>	<i>PO1</i>	05
	b)	What role does wettability play in enhancing or hindering boiling heat transfer?	<i>CO1</i>	<i>PO1</i>	05
	c)	What do positive and negative deviations from Raoult's law signify in a mixture? Explain these deviations using appropriate graphs.	<i>CO1</i>	<i>PO1</i>	10
OR					
2	a)	How do Zeotropic mixtures differ from ideal mixtures? Illustrate this with relevant graphs.	<i>CO1</i>	<i>PO1</i>	10
	b)	Explain how are heat pipes utilized in: (i) Cooling satellite transponders and (ii) Preventing icing on airplane wings.	<i>CO1</i>	<i>PO1</i>	10
UNIT-II					
3	a)	Which coolants are commonly used in cooling heat-dissipating devices?	<i>CO2</i>	<i>PO1</i>	05
	b)	How can boiling heat transfer be classified based on its mechanisms?	<i>CO2</i>	<i>PO1</i>	05
	c)	What dimensionless numbers are crucial in boiling heat transfer, and what is their significance?	<i>CO2</i>	<i>PO1</i>	10
OR					
4	a)	In an experimental setup, the various temperatures recorded are tabulated in Table-1, where, T_1 is wall temperature ($^{\circ}\text{C}$), T_2, T_3, T_4 and T_5 are the temperature ($^{\circ}\text{C}$) of copper block at different vertical position and T_f is water temperature ($^{\circ}\text{C}$). The thermal conductivity of copper is 400 $\text{W}/\text{m}\cdot^{\circ}\text{C}$. Distance	<i>CO2</i>	<i>PO2</i>	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

between each thermocouple is 5 mm. Determine the heat fluxes and heat transfer coefficients.

Table-1

Sl.No	T_f	T_1	T_2	T_3	T_4	T_5
1	85	100	102	103	104	106
2	100	112	114	116	118	120

b) Explain the pool boiling regime and its associated stages using a well-labeled graph.

UNIT – III

5 a) How does boiling in horizontal flow occur and which are the heat transfer mechanisms involved in it?

CO2 PO1 12

b) What are the different techniques used to augment heat transfer during flow boiling?

CO2 PO1 10

c) How does microgravity affect boiling in flow boiling heat transfer systems?

CO2 PO1 04

OR

6 a) What are the distinct boiling regimes in vertical flow boiling? Explain them with illustrative sketches.

CO2 PO1 06

b) With the help of neat sketches explain the structure of deep drilled, formed, and machine channel cold plates.

CO2 PO1 10

UNIT-IV

7 a) With the help of neat sketch describe the adiabatic vertical flow.

CO3 PO1 10

b) Why do homogeneous and heterogeneous nucleation occur during flow boiling?

CO3 PO1 10

OR

	8	a)	What are the concepts of nucleation site density, bubble release frequency and bubble departure diameter in boiling heat transfer?	CO3	PO1	10
		b)	Describe an experimental setup for studying flow boiling with detailed and labelled diagrams.	CO3	PO1	10
UNIT - V						
	9	a)	Derive the continuity equation from the scalar transport equation and explain the concept of bubble void fraction in boiling.	CO4	PO1	10
		b)	Derive the energy equation with reference to scalar transport equation.	CO4	PO1	10
			OR			
	10	a)	Derive the momentum equation in partial differential form by considering the scalar transportation.	CO4	PO1	10
		b)	What are some practical applications of boiling heat transfer across various industries?	CO4	PO1	10
