

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2023 Semester End Main Examinations

Programme: B.E.

Branch: Mechanical Engineering

Course Code: 20ME7DEFRM

Course: Fracture Mechanics

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Date: 28.02.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may suitably be assumed.

UNIT - I

1 a) Determine Values of K_I in some cases for the following values **10**
 i) Circumferentially cracked round bar under tension; $a=20\text{mm}$, $D=100\text{mm}$, $P=80\text{kN}$.
 ii) Circumferentially cracked round bar in torsion: $a=10\text{mm}$, $D=100\text{mm}$, $M_t=40\text{kN-m}$.

b) Name the NDT methods for detecting internal cracks. Explain any two methods with the aid of sketches. **10**

OR

2 a) With a neat sketch show Chevron notch. Why Chevron notch is better than a V notch for K_c test specimen? Explain. **06**
 b) What is side grooving? Explain its importance. **04**
 c) Consider a material where $K_{IC} = 35\text{MPa}\sqrt{\text{m}}$. Three test specimens have been fabricated from this material. The specimens are SENB, CCT and SECT. In each case $B=25.4\text{mm}$, $W=50.8\text{mm}$ and $a/w = 0.5$, estimate the failure load for each specimen. Which specimen has the highest failure load? Which has the lowest Failure load? **10**

UNIT - II

3 a) Apply Irwin's correction to determine the SIF, the length of the effective crack and the plastic zone size for edge crack of 15mm length in a plate 80 mm width. The Thickness of the plate is 5mm and the far-field stress is 150MPa ($\sigma_{ys}=350\text{MPa}$).
 b) Obtain the size of the plastic zone ahead of the crack tip according to Dugdale's approach. **10**

OR

4 a) Using Griffith's energy balance formulation show that **05**

$$\sigma = \sqrt{\frac{2E\gamma_s}{\pi a}}$$

where E = Young's modulus, a = half crack length, γ_s = Surface energy of the material

b) Discuss with the help of neat sketch, strain energy release rate G and R curves for both brittle and ductile materials. **05**

c) Determine values of K_I for an oblique crack in a semi-infinite plate: $a=30\text{mm}$, $\beta=45^\circ$, $\sigma=200\text{MPa}$. **05**

d) Determine the energy release rate for an edge cracked loaded as shown in the figure 4d. **05**

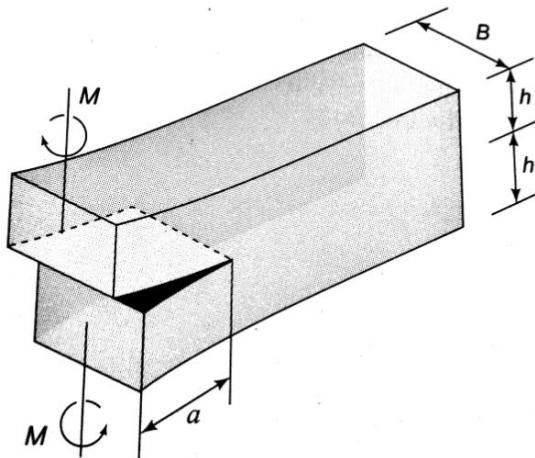


Figure 4d

UNIT - III

5 a) What is CTOD? With a neat sketch explain how to obtain CTOD if CMOD and rotational factor are known for a particular specimen configuration. **06**

b) Obtain equivalence between CTOD and J. **04**

c) Define the J integral. Show that J integral is path independent. **10**

UNIT - IV

6 a) A large plate contains a crack of length $2a_0$ and is subjected to a constant-amplitude tensile cyclic stress normal to the crack which varies between 100 MPa and 200 MPa. The following data were obtained: for $2a_0 = 2\text{ mm}$ it was found that $N = 20,000$ cycles were required to grow the crack to $2a_f = 2.2\text{ mm}$, while for $2a_0 = 20\text{ mm}$ it was found that $N = 1000$ cycles were required to grow the crack to $2a_f = 22\text{ mm}$. The critical stress intensity factor is $K_{IC} = 60\text{ MPa}\sqrt{\text{m}}$. Determine the constants in the Paris equation and Forman equations. **10**

b) State Fatigue crack closure mechanism in metals and explain them with neat sketches. **10**

UNIT - V

7 a) Explain practical crack arrest mechanism of decreasing energy release rate G, using a neat sketch. **05**

b) Explain with figure the phenomenon of crack branching considering the kinetic energy. **05**

c) Discuss Kinetic Energy and Crack speed after crack reaches critical crack length and also derive crack speed expression. **10**
