

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May / June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VIII

Branch: Mechanical Engineering

Duration: 3 hrs.

Course Code: 22ME8PETRI

Max Marks: 100

Course: Tribology

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of Design data hand book is permitted.

UNIT - I			CO	PO	Marks
1	a)	State and explain Newton's law of viscous flow	<i>CO1</i>	<i>PO1</i>	06
	b)	Explain the effect of temperature and pressure on viscosity of lubricating oil.	<i>CO1</i>	<i>PO1</i>	06
	c)	Explain with neat sketch the working of falling sphere type viscometer	<i>CO1</i>	<i>PO1</i>	08
OR					
2	a)	Discuss in brief the various mechanisms of wear	<i>CO1</i>	<i>PO1</i>	10
	b)	In brief discuss the delamination theory of wear	<i>CO1</i>	<i>PO1</i>	10
UNIT - II					
3		Stating clearly the assumptions made, derive the Reynold's equation in two dimensions	<i>CO2</i>	<i>PO2</i>	20
OR					
4	a)	Derive Petroff's equation for co-efficient of friction of lightly loaded journal bearing	<i>CO2</i>	<i>PO2</i>	10
	b)	A lightly loaded journal bearing as the following specifications, Bearing diameter, $d=25\text{mm}$ Length of bearing, $L=57\text{mm}$ Clearance, $h=c=5.08 \times 10^{-2}\text{mm}$ Journal speed, $N=25000\text{rpm}$ Load, $W=910\text{N}$ Viscosity of the Lubricant, $\mu=2.4 \times 10^{-3}\text{ Pa-Sec}$ Determine (1). Power loss in the bearing and (2). Co-efficient of friction.	<i>CO2</i>	<i>PO2</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
5	a)	Obtain an expression for load carrying capacity of plane slider bearing with fixed shoe.	<i>CO3</i>	<i>PO2</i>	10
	b)	<p>A rectangular plane slider bearing with fixed shoe has following specifications.</p> <ul style="list-style-type: none"> a. Bearing length, $B = 8\text{cm}$ b. Width of shoe, $L = 7.5\text{ cm}$ c. Load on bearing, $W = 20000\text{ N}$ d. Slider velocity, $U = 250\text{ cm/s}$ e. Inclination, $\alpha = -0.0004\text{ radians}$ f. Mean viscosity of oil, $\mu = 30\text{cp}$ <p>Determine</p> <ol style="list-style-type: none"> 1. Minimum film thickness. 2. Co-efficient of friction. 3. Power loss due to friction. 	<i>CO3</i>	<i>PO2</i>	10
OR					
6	a)	Obtain an expression for load carrying capacity of an idealized full journal bearing	<i>CO3</i>	<i>PO2</i>	12
	b)	<p>An idealized full journal bearing has the following specifications. Diameter of journal = 56 mm Length of bearing = 68 mm Speed of journal = 1800 rpm Attitude = 0.6 Diametral clearance = 0.10 mm Viscosity of lubricant = 14 cP Determine:</p> <ol style="list-style-type: none"> i) Sommerfeld number ii) Load carrying capacity iii) Coefficient of friction iv) Frictional force v) Power loss vi) Minimum film thickness 	<i>CO3</i>	<i>PO2</i>	08
UNIT - IV					
7	a)	Derive an expression for load carrying capacity of a hydrostatic circular thrust bearing	<i>CO4</i>	<i>PO2</i>	10
	b)	<p>A hydrostatic step bearing for a turbine rotor has the following specifications,</p> <p>Diameter of shaft = 150 mm Diameter of pocket = 100 mm Thrust on the bearing = 60 KN Shaft speed = 1500 rpm.</p> <p>Viscosity of the lubricant at operating condition = 30 cp Desirable of film thickness $h = 0.125\text{ mm}$</p> <p>Find 1) rate of oil flow through the bearing 2) Power loss due to viscous friction 3) Co-efficient of friction.</p>	<i>CO4</i>	<i>PO2</i>	10
OR					

	8	a)	With sketches, explain different systems of hydrostatic lubrication.	CO4	PO2	08
		b)	List out different desirable properties of bearing materials and explain any four properties in details.	CO4	PO2	12
			UNIT - V			
	9	a)	Discuss the principle of physical vapour deposition technique with a neat sketch	CO5	PO1	12
		b)	Explain with neat sketch of working principle of electroplating	CO5	PO1	08
			OR			
	10	a)	Describe the following terms a) Carburizing b) Cyaniding	CO5	PO1	10
		b)	Explain with neat sketch of working principle Chemical Vapor Deposition (CVD)	CO5	PO1	10

B.M.S.C.E. - EVEN SEM 2022/23