

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Branch: Medical Electronics Engineering

Course Code: 22MD3PCBSM

Course: Biomedical Sensors and Measurements

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) Define the term Measurement and discuss its importance.	04
	b) Define the following static characteristics of measuring instruments: Threshold, Resolution, Sensitivity, Accuracy and Precision.	06
	c) Discuss the Step Responses of Zero, First and Second order instruments, with the help of their governing Input-Output relations and illustrations..	10

UNIT - II

2	a) “Electrical Sensors exhibit several advantages” to render themselves more suitable for modern measurement systems. Justify this statement, briefly explain their any FOUR specific advantages.	04
	b) Differentiate between Active and Passive sensors with an example for each type.	06
	c) Four Resistance strain gauges ($R = 250 \Omega$, $GF = 2.68$) are bonded (two each) on either sides of a Steel cantilever (Young’s modulus = 210 GPa) at its fixed end. When a tensile force of 500 MPa is applied, <ul style="list-style-type: none"> (i) Determine the Strain created and the %change in gauge resistances (ii) Calculate the output voltages, when one of the gauges is connected to a Potentiometer circuit, and when both the gauges are connected in Half-bridge and Full bridge configurations. NOTE:- Assume $V_{dc} = 5V$, Fixed resistors = $1k\Omega$. Also show the circuit connections. 	10

UNIT - III

3	a) Compare the RT characteristics, material selection for RTDs and Thermistors.	08
	b) With relevant governing equations, discuss the principle of a semiconducting P-N junction that provides a body temperature dependent linear output voltage.	06
	c) Illustrate the working principle of Radiation thermometers used for skin temperature, highlighting the total radiation entering the Radiometer.	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR

4 a) Determine the changes in resistance values when an RTD (with $\alpha = 0.00392$ / 0°C and $R_o = 110\Omega$ at 25°C) and a Thermistor (with $\beta = 2800\text{K}$ and $R_o = 12\text{k}\Omega$ at 25°C) are simultaneously subjected to a new temperature of 100°C . **08**

b) Discuss the technique of realizing an electronic insulator for zero-heat flow condition, for the purpose of measuring skin temperature that is approximated to deep-tissue temperature. **08**

c) Explain how the sensitivity of thermocouples can be enhanced. **04**

UNIT - IV

5 a) Explain the origin of biopotential and the generation of Action potentials in the human body cells. **08**

b) Illustrate how, a Standard hydrogen electrode is used to measure the electrode potential with reference to zero potential. **04**

c) Briefly explain the reversible electrochemical reaction at the surface of a Silver–Silver Chloride Electrode, and the electrode's application as surface electrode for ECG measurement. **08**

OR

6 a) Illustrate the Double-layer formation at an electrolyte-metal interface, and discuss how the ionic potentials in the human body are transduced to electronic potentials by the Electrodes attached to the human body. **06**

b) Discuss the equivalent circuit of ECG Electrode-impedance, and its variation with frequency and current density for any one typical electrode material. **10**

c) Define Biomagnetism and relate them with the Bioelectric properties. **04**

UNIT - V

7 a) With the schematic diagram of an ion-selective electrode, its measurement system, and the governing equations, explain the principle of a Chemical measurement. **10**

b) Explain the construction and working principle of a Zirconia oxygen sensor. **06**

c) Define a Biosensor and give an example. **04**
