

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Medical Electronics Engineering

Duration: 3 hrs.

Course Code: 23MD3PCBSM

Max Marks: 100

Course: Biomedical Sensors and Measurements

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain the static characteristics of a sensor with examples.	<i>CO1</i>	<i>PO1</i>	04
	b)	Explain the step responses of zero, first, and second-order systems with examples.	<i>CO1</i>	<i>PO1</i>	08
	c)	What are the types of measurement errors? Discuss methods to improve measurement accuracy.	<i>CO1</i>	<i>PO1</i>	08
OR					
2	a)	Discuss the static and dynamic characteristics of sensors in detail.	<i>CO1</i>	<i>PO1</i>	08
	b)	How can sensor measurement systems be improved? Discuss in detail.	<i>CO1</i>	<i>PO1</i>	08
	c)	Describe the dynamic characteristics of a first-order system.	<i>CO1</i>	<i>PO1</i>	04
UNIT - II					
3	a)	Differentiate between active and passive sensors with examples.	<i>CO2</i>	<i>PO2</i>	04
	b)	Explain the theory and applications of resistive strain gauges. Include bridge circuits in your explanation.	<i>CO2</i>	<i>PO2</i>	08
	c)	Compare resistive, inductive, and capacitive sensors in terms of working principles and applications.	<i>CO2</i>	<i>PO2</i>	08
OR					
4	a)	Describe the operating principle of an LVDT with a neat diagram.	<i>CO2</i>	<i>PO2</i>	08
	b)	What is respiratory inductance plethysmography (RIP), and how is it used?	<i>CO2</i>	<i>PO2</i>	04
	c)	Explain the working principle and applications of piezoelectric sensors.	<i>CO2</i>	<i>PO2</i>	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
5	a)	Compare RTDs, thermistors, and thermocouples in terms of principles, characteristics, and materials.	CO3	PO3	08
	b)	Describe the operation of a pulse oximeter using photoelectric sensors.	CO3	PO3	08
	c)	How do photovoltaic sensors work, and what are their applications?	CO3	PO3	04
OR					
6	a)	Define RTDs and its working principle, list one material used in their construction.	CO3	PO3	04
	b)	Discuss the role of the AD590 in temperature measurement systems.	CO3	PO3	08
	c)	Explain the principle of fiber optic temperature sensors and their advantages in medical applications.	CO3	PO3	08
UNIT - IV					
7	a)	What is an action potential? Explain polarized and depolarized state of a cell with a neat figure.	CO4	PO4	06
	b)	Describe the origin and characteristics of an ECG signal with a neat waveform.	CO4	PO4	06
	c)	Discuss the electrode-tissue interface and its implications on signal quality.	CO4	PO4	08
OR					
8	a)	Describe the generation, characteristics, and clinical applications of EEG signals.	CO4	PO4	08
	b)	Explain the characteristics and advantages of Ag-AgCl electrodes.	CO4	PO4	04
	c)	Describe the 10-20 system in detail, including its advantages in EEG recordings.	CO4	PO4	08
UNIT - V					
9	a)	Describe the principle, construction, and working of ion-selective field-effect transistors (ISFETs).	CO5	PO9	08
	b)	Explain the working principle of a Quartz Crystal Microbalance (QCM)-based immunosensor.	CO5	PO9	04
	c)	Discuss the concept, components, and properties of biosensors.	CO5	PO9	08
OR					
10	a)	Explain the principle, construction, and applications of immunosensors.	CO5	PO9	08
	b)	Describe the enzyme-based biosensor and its applications.	CO5	PO9	04
	c)	Describe the Clark electrode and its role in glucose detection.	CO5	PO9	08
