

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Branch: Medical Electronics Engineering

Course Code: 23MD3PCBSM

Course: Biomedical Sensors and Measurements

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Discuss to differentiate between the following with relevant expressions and examples (i) Accuracy and Precision (ii) Zero Order and First Order Instrument	CO1	PO1	08
	b)	Explain the Step response of a Second order Instrument with suitable illustrations, highlighting the three types based on the value of its damping factor.	CO1	PO1	08
	c)	Define Sensitivity, and illustrate how it's quantified for a measuring instrument with nonlinear static calibration curve.	CO1	PO1	04
UNIT - II					
2	a)	List out any five relative advantages and disadvantages of Electrical sensors over their mechanical counterparts.	CO2	PO2	06
	b)	Two Strain gauges ($R_1=R_2 = 360 \Omega$ & $GF_1=GF_2 = 4.8$) are mounted on the two sides of a specimen, whose Young's modulus is 6000 GN/m^2 . When it is subjected to a stress of 10000 MN/m^2 , (i) Determine Strain created, Changes in gauge resistances (ii) Construct a Half bridge circuit excited by 5V. And, assuming the resistances in the other 2 arms to be same and equal to $1k\Omega$, determine the bridge's output voltage. Explain why, the output of (ii) above will not be affected by temperature changes on the specimen.	CO2	PO2	08
	c)	Piezoelectric Sensors are direction sensitive. Justify this statement with a suitable example.	CO2	PO2	06
OR					
3	a)	Discuss to differentiate between Active and Passive Sensors giving one example for each type.	CO2	PO2	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	An LVDT produces an output of say $E_o = E_{s1} - E_{s2} = 0.20 \text{ mV} \pm 200 \text{ mV}$ for displacement range of say $X = \pm 2.5 \text{ cm}$, when the primary is excited by atypical 2V AC at 1kHz. Illustrate how the displacement and its direction are measured, with the help of a block diagram and appropriate waveforms (not to scale).	CO2	PO2	10
	c)	Explain the basic principle of using a Capacitive sensor for displacement measurement.	CO2	PO2	04
UNIT - III					
4	a)	Discuss the principle of measuring temperature using AD590, and explain how the device is designed to provide a sensitivity of $1\mu\text{A}/\text{Kelvin}$, using its simplified internal circuit.	CO3	PO3	10
	b)	When the temperature of a medium increases from 30°C to 150°C , determine the resistance changes in these sensors (i) PRTD with $\alpha = 0.00385/\text{ }^\circ\text{C}$, and $R_o = 112 \Omega$ (ii) Thermistor with $B = 3200 \text{ K}$, and $R_o = 10 \text{ k}\Omega$ Comment on the observed changes in resistance values.	CO3	PO3	06
	c)	Briefly explain Reference junction compensation in Thermocouples	CO3	PO3	04
OR					
5	a)	Discuss the basic principle and the technique of measuring SpO2 using the Pulse Oximeter.	CO3	PO3	08
	b)	Discuss the basic principle, and differentiate between the Photovoltaic (PV) and Photoconductive (PC) modes of operation of Photodiodes.	CO3	PO3	08
	c)	Explain the basic principle of a Photoresistor.	CO3	PO3	04
UNIT - IV					
6	a)	With suitable illustrations, discuss the generation of Action potentials in the human body, and explain how they become Bioelectrical potentials on the skin surface via Volume conduction.	CO1	PO1	08
	b)	Illustrate the Einthoven triangle, and discuss how 12-lead ECG is obtained using 10 electrodes placed on the human body.	CO1	PO1	08
	c)	Differentiate between Polarizable and Non-polarizable electrodes, and justify why Ag-AgCl electrodes are nearly Non-Polarizable type.	CO1	PO1	04
UNIT - V					
7	a)	Define, and briefly explain the major classification of Chemical sensors, with one example for each type.	CO2	PO2	08
	b)	Discuss the principle of Surface Plasmon Resonance (SPR) based Immunosensor.	CO2	PO2	08
	c)	Illustrate the components of a Biosensor, and explain briefly.	CO2	PO2	04