

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Branch: Medical Electronics Engineering

Course Code: 22MD3PCBSM

Course: Biomedical Sensors and Measurements

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
1	a)	Explain how measuring instruments are classified based on their application, giving an example for each type.				<i>CO1</i>	<i>PO1</i>	08
	b)	If a true value of 100 units is measured as 96 units by an instrument, determine its absolute and relative accuracies.				<i>CO1</i>	<i>PO1</i>	04
	c)	Discuss the step response of a First order measuring instrument.				<i>CO1</i>	<i>PO1</i>	08
OR								
2	a)	Discuss the Classification of Instruments based on applications and explain the Performance Characteristics of measuring instruments.				<i>CO2</i>	<i>PO2</i>	10
	b)	Elaborate on Units of Measurement Quantities with reference to the Biomedical sensors.				<i>CO2</i>	<i>PO2</i>	10
			UNIT - II					
3	a)	With examples, define to differentiate between (i) Mechanical and Electrical Sensors (ii) Active and Passive Sensors				<i>CO1</i>	<i>PO1</i>	08
	b)	Discuss the construction and working an LVDT for displacement measurement.				<i>CO1</i>	<i>PO1</i>	08
	c)	Two Strain gauges with $GF1 = 4.0$ and $GF2 = -12.5$ are subjected to a tensile strain of 10,000 microstrains. If their unstrained resistances are 360Ω each, determine the changes in the resistances due to the applied strain.				<i>CO3</i>	<i>PO3</i>	04
OR								
4	a)	Mention any one sensor to measure physiological pressure measurement and explain its working principle.				<i>CO2</i>	<i>PO3</i>	10
	b)	List the different Biomedical Signals with its Parameters, Typical ranges and Sensor types used to acquire them.				<i>CO2</i>	<i>PO3</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
5	a)	Compare the characteristics of RTDs and Thermistors as Temperature sensors.	CO2	PO2	08
	b)	Discuss the temperature sensitivity of P-N junction diodes and transistors.	CO2	PO2	12
OR					
6	a)	Discuss temperature measurement using Thermocouples, and the technique of providing reference junction compensation.	CO2	PO2	12
	b)	Discuss the technique of measuring Core-body temperature using a Radio-pill.	CO2	PO2	08
UNIT - IV					
7	a)	Discuss the generation of Action potentials and their propagation in the human body.	CO3	PO3	08
	b)	Compare the characteristic features of Ag-AgCl and Stainless-steel electrodes used as surface electrodes	CO3	PO3	12
OR					
8	a)	Explain the Einthoven's triangle and the standard 12-lead clinical ECG system.	CO3	PO3	10
	b)	Discuss EEG electrode placement and signal acquisition using the international 10-20 electrode system.	CO3	PO3	10
UNIT - V					
9	a)	Discuss the construction and principle of an Ion-selective FET.	CO2	PO2	08
	b)	Explain the principle of a Zirconia Oxygen sensor.	CO2	PO2	08
	c)	Define a Biosensor with an example application.	CO2	PO2	04
OR					
10	a)	Mention the application of CO2 electrode and Zirconia oxygen sensor with its working principle.	CO3	PO3	10
	b)	“Under what conditions Immunosensors, and DNA sensors are preferred”. Justify with examples.	CO3	PO3	10
