

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Semester: IV

Branch: Medical Electronics Engineering

Duration: 3 hrs.

Course Code: 22MD4PCDTE

Max Marks: 100

Course: DIAGNOSTIC AND THERAPEUTIC EQUIPMENTS

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Analyze the operation of a right leg driven ECG amplifier for minimizing the common-mode signal between the body of the patient and the floating ground.	<i>CO1</i>	<i>PO2</i>	06
	b)	Explain the working of an isolation amplifiers with optical isolation	<i>CO1</i>	<i>PO2</i>	06
	c)	Explain about the components of a cardiac monitor and its working	<i>CO1</i>	<i>PO3</i>	08
OR					
2	a)	Construct the differential amplifier circuit of a bio signal measurement and its working	<i>CO1</i>	<i>PO2</i>	08
	b)	Discuss the various methods used to detect and measure the pulse rate.	<i>CO2</i>	<i>PO3</i>	12
UNIT - II					
3	a)	With a neat block diagram explain the working of ear oximeter.	<i>CO2</i>	<i>PO3</i>	10
	b)	Specify the need for blood gas analyzers in clinical applications. Explain in detail the setup of complete blood gas analyzers with a neat diagram.	<i>CO2</i>	<i>PO3</i>	10
UNIT - III					
4	a)	Identify the basic requirements for any implantable circuit. Discuss the various types of implantable pacemakers.	<i>CO2</i>	<i>PO3</i>	10
	b)	Elaborate on the process involved in calculating cardiac output through thermal dilution technique.	<i>CO2</i>	<i>PO3</i>	10
OR					

	5	a)	Specify the need for defibrillator and explain the working of DC defibrillator.	<i>CO2</i>	<i>PO3</i>	10
		b)	For what purpose nitrogen washout technique is employed? Explain its working principle.	<i>CO2</i>	<i>PO3</i>	10
UNIT - IV						
	6	a)	How micro shock and micro shock are prevented?	<i>CO2</i>	<i>PO6</i>	06
		b)	Illustrate the application of ultrasound in therapeutic purpose.	<i>CO2</i>	<i>PO3</i>	10
		c)	List out the effects of ionizing radiation.	<i>CO2</i>	<i>PO6</i>	04
UNIT - V						
	7	a)	Differentiate between humidifier, nebulizer and aspirator.	<i>CO2</i>	<i>PO3</i>	06
		b)	Identify the commonly used membrane for hemodialysis and justify why it is used extensively.	<i>CO2</i>	<i>PO3</i>	06
		c)	With a neat functional diagram explain the positive pressure ventilator.	<i>CO2</i>	<i>PO3</i>	08
