

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: Medical Electronics Engineering

Course Code: 22MD4PCPCS

Course: PHYSIOLOGICAL CONTROL SYSTEM

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Determine the transfer function $Y_2(s)/F(s)$ of the system shown below.	<i>CO1</i>	<i>PO1</i>	10
		b)	With a neat block diagram explain the linear mathematical model of muscle mechanism.	<i>CO1</i>	<i>PO1</i>	10
OR						
2	a)	Determine the overall transfer function $C(s)/R(s)$ of the following			<i>CO1</i> <i>PO1</i> 10	
	b)	Enumerate the difference between Engineering and Physiological control systems with a suitable example.			<i>CO1</i> <i>PO1</i> 10	
UNIT - II						
3	a)	A unity feedback control system is characterized by the following open loop transfer function $G(s) = (0.4s+1)/s(s+0.6)$. Determine its transient response for unit step input and sketch the response. Evaluate the maximum overshoot and corresponding peak time			<i>CO2</i> <i>PO2</i> 10	

	b)	Illustrate the working of regulation of cardiac output with a neat block diagram	CO2	PO2	10
		UNIT - III			
4	a)	Explain the following 1. BIBO stability 2. Root locus construction rules.	CO3	PO3	10
	b)	Elaborate on stability analysis of the pupillary light reflex.	CO3	PO3	10
		UNIT - IV			
5	a)	Explain the process of Starling heart lung preparation.	CO4	PO3	08
	b)	Justify the regulation of blood glucose with minimum number of parameter.	CO4	PO3	12
		UNIT - V			
6	a)	Define the following 1.Gain margin 2.Phase margin 3.Corner frequency 4.Gain cross over frequency	CO3	PO3	08
	b)	Examine the Bode plot of the linearized lung mechanics model in open and closed loop modes.	CO3	PO3	12
		OR			
7	a)	Elucidate the frequency responses of the circulatory control model.	CO3	PO3	10
	b)	Sketch the bode plot for the following transfer function. Determine the phase margin and gain margin $G(s) = \frac{75 (1 + 0.2s)}{s (s^2 + 16s + 100)}$	CO3	PO3	10
