

B.M.S. College of Engineering, Bengaluru-560019

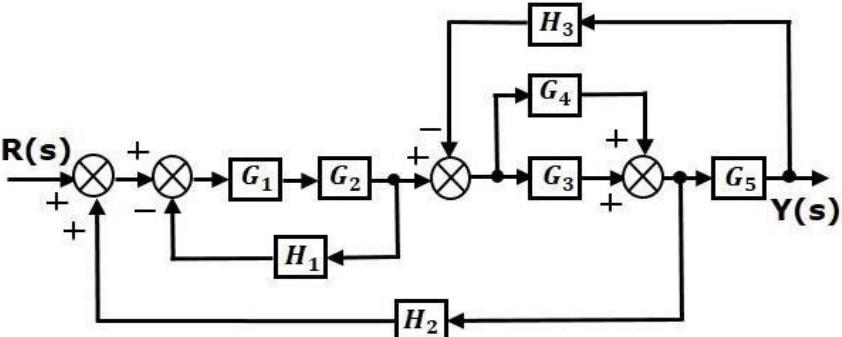
Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

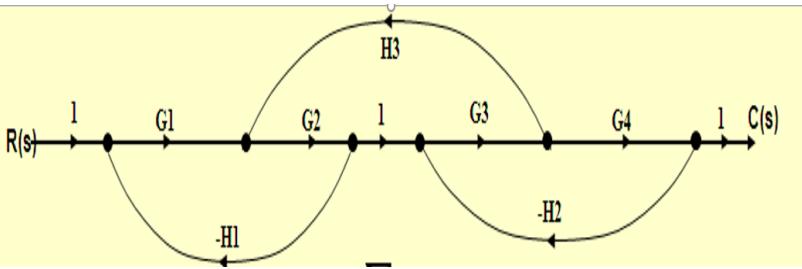
Programme: B.E.

Semester: IV

Branch: Medical Electronics Engineering


Duration: 3 hrs.

Course Code: 22MD4PCPCS


Max Marks: 100

Course: PHYSIOLOGICAL CONTROL SYSTEM

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	List the differences between closed loop and open loop control systems.	CO1	PO1	4
	b)	Consider the block diagram shown in the Figure 1. Reduce the block diagram into single block using the block diagram reduction rules.	CO1	PO1	10
	c)	<p>Figure 1.</p>	CO1	PO1	6
2	a)	List the differences between Engineering and Physiological Control systems.	CO1	PO1	5

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Determine the transfer function for the signal flow graph shown in the Figure 2. Figure 2.	CO1	PO1	8
	c)	Describe the contribution of interrelated systems to the muscle stretch reflex.	CO1	PO1	7
		UNIT - II			
3	a)	Plot the response of a second order system for unit-step input with various values of damping ratio and elaborate on time domain specifications.	CO2	PO2	10
	b)	Draw the simplified model of cardiac output regulation and Plot the response of Cardiac output curves for the factors that affects slope and position and only position.	CO2	PO2	10
		UNIT - III			
4	a)	Investigate the stability of the systems having the characteristic equation $s^5+4s^4+8s^3+8s^2+7s+4=0$ and comment on the number of roots lying on RHS of S plane with routh stability criterion.	CO3	PO3	10
	b)	Analyze stability of the linearized model of pupillary light reflex using Routh-Hurwitz criterion.	CO3	PO3	10
		UNIT - IV			
5	a)	Justify how adjustment of Starling resistor or the vertical position of the arterial capacitance allowed the researchers to control arterial pressure.	CO4	PO4	10
	b)	Draw the conclusion from Kao and Ray's experiment on anesthetized dogs to determine whether "the increase in cardiac output observed during exercise was due to neural or humoral factors".	CO4	PO4	10
		UNIT - V			
6	a)	Define Bode plot and enumerate the advantages of frequency response analysis.	CO3	PO3	8
	b)	For the following transfer function draw bode plot and obtain gain cross-over frequency. $G(s) = \frac{20}{s(1 + 3s)(1 + 4s)}$	CO3	PO3	12
		OR			

	7	a)	Examine the Bode plots with frequency response of the linearized lung mechanics model in open-loop and closed-loop modes.	CO3	PO3	10
		b)	Illustrate the frequency responses of the circulatory control model under conditions that stimulate normal heart rate control, complete β -adrenergic blockade and complete parasympathetic blockade with suitable diagrams.	CO3	PO3	10

B.M.S.C.E. - EVEN SEM 2022-23