

B.M.S. College of Engineering, Bengaluru-560019

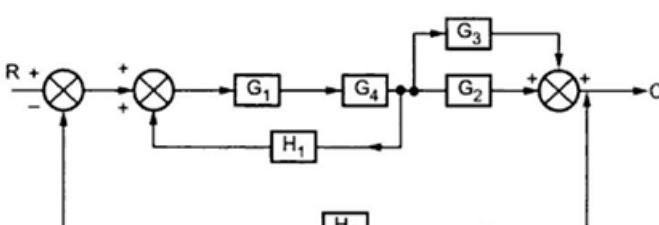
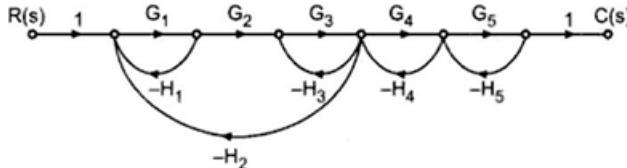
Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Medical Electronics Engineering



Duration: 3 hrs.

Course Code: 23MD4ESPCS

Max Marks: 100

Course: Physiological Control Systems

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks
1	a)	Determine the transfer function $C(s) / R(s)$ of the system shown in the Figure 1. (a)	CO1	PO3	10
	b)	Find $\frac{C(s)}{R(s)}$ for the Figure 1. (b)	CO1	PO3	10
OR					
2	a)	How would you substantiate that muscle stretch reflex provides a good example of negative feedback in physiological control system?	CO2	PO1	10
	b)	Describe the mathematical formulation that characterize the input output properties of linearized model of muscle mechanics.	CO2	PO1	10
MODULE - II					
3	a)	Illustrate the schematic representation of the processes involved in the regulation of glucose and insulin. Brief the steady state analysis of glucose regulation under normal condition, Type-1 diabetes and Type-2 diabetes.	CO2	PO2	12

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Summarize the importance of cardiac output curve considering the factors that affect slope and position and factors that affect only position.	<i>O2</i>	<i>PO2</i>	08
MODULE - III					
4	a)	List the advantages of Routh's criterion.	<i>CO3</i>	<i>PO1</i>	06
	b)	Write the general steps followed to construct root locus.	<i>CO3</i>	<i>PO1</i>	08
	c)	Elaborate the stability analysis of the pupillary light reflex considering a basic scheme of block diagram.	<i>CO3</i>	<i>PO1</i>	06
MODULE - IV					
5	a)	Which are the three fundamental problems in system analysis. Explain them with a neat block diagram.	<i>CO4</i>	<i>PO2</i>	12
	b)	Discuss the Kao's cross-circulation experiments.	<i>CO4</i>	<i>PO3</i>	08
MODULE - V					
6	a)	Enumerate the steps followed to sketch the bode plot.	<i>CO3</i>	<i>PO3</i>	10
	b)	Specify the general frequency response specifications.	<i>CO3</i>	<i>PO3</i>	10
OR					
7	a)	Show the frequency responses of the linearized lung mechanics model.	<i>CO3</i>	<i>PO2</i>	10
	b)	Discuss the frequency response of glucose-insulin regulation.	<i>CO3</i>	<i>PO2</i>	10
