

B.M.S. College of Engineering, Bengaluru-560019

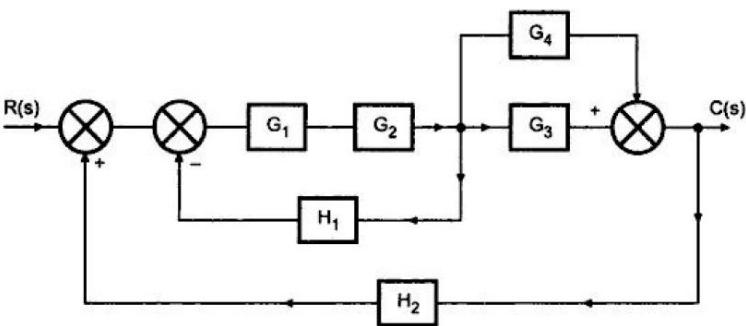
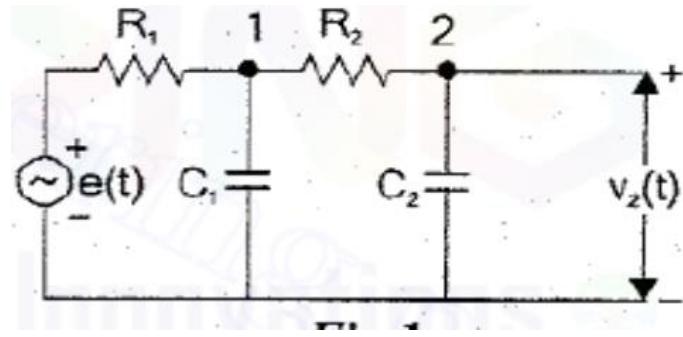
Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Medical Electronics Engineering

Course Code: 23MD4ESPCS / 22MD4ESPCS



Course: Physiological Control Systems

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Obtain $C(s)/R(s)$ of the system shown in fig 1.a using block diagram reduction.	CO1	PO3	10
		<p>Fig.1a</p>			
	b)	Differentiate between physiological and Engineering control system. Illustrate the same with relevant examples.	CO1	PO3	10
OR					
2	a)	Illustrate the working of muscle stretch reflex with a neat schematic and block diagram.	CO1	PO3	10
	b)	Obtain the Transfer Function $V_2(s)/E(s)$ of the electrical network shown in Fig 2 .	CO1	PO3	10
		<p>Fig 2b</p>			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
3	a)	The unity feedback system is characterized by an open loop transfer function $G(s) = \frac{K}{s(s+10)}$. Determine the gain K, so that the system will have a damping ratio of 0.5 for this value of K. Determine settling time, peak overshoot and time to peak overshoot for a unit step input.	CO2	PO3	10
	b)	Consider a unity feedback system with a closed loop transfer function $\frac{C(s)}{R(s)} = \frac{Ks+b}{s^2+as+b}$. Determine the open loop transfer function G(s). Show that the steady state error with unit ramp input is given by $\frac{(a-K)}{b}$.	CO2	PO3	10
OR					
4	a)	Define the following: i) Rise time ii) Settling time iii) Maximum overshoot iv) Damping ratio	CO2	PO3	08
	b)	With a relevant block diagram and waveforms, elaborate on the chemical regulations of the ventilation.	CO2	PO3	12
UNIT - III					
5	a)	Elaborate on the stability analysis of the pupillary light reflex with suitable functional diagram and linearized model.	CO3	PO3	08
	b)	A unity feedback control system has an open loop transfer function $G(s) = \frac{K}{s(s^2+4s+13)}$. Sketch the root locus.	CO3	PO3	12
OR					
6	a)	Define the term "Asymptotically stable system". Using Routh Criterion, test the stability of the system represented by the characteristics equation, $s^5+4s^4+8s^3+8s^2+7s+15=0$	CO3	PO3	08
	b)	A unity feedback control system has an open loop transfer function, $G(S) = \frac{K}{s(s^2+6s+10)}$ Find i). Poles and Zeroes, ii). The Root Locus on the real axis. iii). Angle of Asymptotes and Centroid. Also sketch the root locus for the transfer function G(S).	CO3	PO3	12
UNIT - IV					
7	a)	Explain the process of the Starling heart lung preparation	CO4	PO3	08

	b)	Identify and explain the various non-parametric identification methods.	CO4	PO3	12
		OR			
8	a)	Mention the three fundamental problems in system analysis and identification of the same in closed loop systems.	CO4	PO4	10
	b)	“Both neural and humoral factors are involved in the regulation of cardiac output during muscular activity”. Justify this statement with Kao’s cross circulation experiments.	CO4	PO4	10
		UNIT - V			
9	a)	Plot the Bode diagram for the following transfer function $G(s) = \frac{10}{s(1+0.4s)(1+0.1s)}$ and obtain the gain and phase cross over frequencies.	CO3	PO3	14
	b)	Discuss the advantages of frequency response analysis.	CO3	PO3	06
		OR			
10	a)	Describe the frequency response of circulatory control system model.	CO3	PO3	06
	b)	Discuss the frequency response of glucose –insulin regulation	CO3	PO3	10
	c)	Specify the significance of gain and phase margin.	CO3	PO3	04
