

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: Medical Electronics Engineering

Course Code: 23MD4ESPCS

Course: Physiological Control Systems

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

MODULE - I			CO	PO	Marks
1	a)	Determine the overall transfer function $C(s)/R(s)$ of the following	<i>CO1</i>	<i>PO2</i>	10
	b)	Enumerate the difference between Engineering and Physiological control systems with a suitable example.	<i>CO1</i>	<i>PO2</i>	10
OR					
2	a)	With a neat block diagram explain the linear mathematical model of muscle mechanism.	<i>CO2</i>	<i>PO2</i>	10
	b)	Enumerate the difference between open loop systems and closed loop systems with a suitable example.	<i>CO2</i>	<i>PO2</i>	10
MODULE - II					
3	a)	Illustrate the working of muscle stretch relax with a neat block diagram.	<i>CO3</i>	<i>PO2</i>	10
	b)	Derive the response of second order system for over damped case when input is unit step.	<i>CO3</i>	<i>PO2</i>	10
MODULE - III					
4	a)	Explain the following 1. BIBO stability 2. Root locus construction rules.	<i>CO3</i>	<i>PO2</i>	10
	b)	Describe the stability analysis of the pupillary light reflex.	<i>CO3</i>	<i>PO2</i>	10
MODULE - IV					
5	a)	Explain the process of starling heart lung preparation.	<i>CO3</i>	<i>PO2</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Justify the regulation of blood glucose with minimum number of parameter.	CO3	PO2	10
		MODULE - V			
6	a)	The open loop transfer function of a unity feedback system is given as follows. Sketch the polar plot and determine the phase margin. $G(s) = \frac{(1 + 0.2s)(1 + 0.025s)}{s^3(1 + 0.005s)(1 + 0.001s)}$	CO4	PO2	10
	b)	A open loop transfer function of a unity feedback system is given by $G(s) = 1/s(1+s)^2$. Sketch the polar plot and determine the gain and phase margin.	CO4	PO2	10
		OR			
7	a)	Define the following 1.Gain margin 2.Phase margin 3.Corner frequency 4.Gain cross over frequency	CO4	PO2	10
	b)	Sketch the bode plot for the following transfer function. Determine the phase margin and gain margin $G(s) = \frac{75(1 + 0.2s)}{s(s^2 + 16s + 100)}$	CO4	PO2	10
