

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Medical Electronics Engineering

Duration: 3 hrs.

Course Code: 23MD4ESPCS / 22MD4ESPCS / 19ML4PCPCS

Max Marks: 100

Course: Physiological Control System

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Differentiate between physiological and engineering control system and illustrate the same with relevant examples.	CO1	PO1	10
	b)	Compute $C(s)/R(s)$ using Mason's gain formula for the signal flow graph shown in fig 1.(b)	CO1	PO3	10
Fig.1.b					
OR					
2	a)	Obtain $C(s)/R(s)$ of the system shown in fig 2.a using block diagram reduction.	CO1	PO3	10
	b)				
	b)	Illustrate the working of muscle stretch reflex with a neat schematic and block diagram.	CO1	PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
3	a)	Derive the expression for steady state error.	CO2	PO2	05
	b)	The unity feedback system is characterized by an open loop transfer function $G(s) = \frac{K}{s(s+10)}$. Determine the gain K, so that the system will have a damping ratio of 0.5 for this value of K. Determine settling time, peak overshoot and time to peak overshoot for a unit step input.	CO2	PO2	08
	c)	Illustrate the process involved in the regulation of glucose and insulin.	CO2	PO2	07
OR					
4	a)	Consider a unity feedback system with a closed loop transfer function $\frac{C(s)}{R(s)} = \frac{Ks+b}{s^2+as+b}$. Determine the open loop transfer function G(s). Show that the steady state error with unit ramp input is given by $\frac{(a-K)}{b}$.	CO2	PO2	10
	b)	Define the following terms: i) Delay Time ii) Rise Time iii) Peak Time iv) Peak Overshoot	CO2	PO2	10
UNIT - III					
5	a)	A unity feedback control system has an open loop transfer function $G(s) = \frac{K}{s(s^2+4s+13)}$. Sketch the root locus.	CO3	PO3	12
	b)	Elaborate on the stability analysis of the pupillary light reflex with suitable functional diagram and linearized model.	CO2	PO2	08
OR					
6	a)	For a system with characteristic equation $F(S) = S^6+3S^5+4S^4+6S^3+5S^2+3S+2=0$, examine the stability of the system	CO3	PO3	08
	b)	State the rules for the construction of the root locus.	CO2	PO2	12
UNIT - IV					
7	a)	Draw the hypothesis for the Kao's Cross-circulation Experiment.	CO2	PO2	12
	b)	Explain the process of the Starling heart lung preparation.	CO2	PO2	08
OR					
8	a)	Discuss the basic problems in physiological system analysis.	CO2	PO2	10
	b)	Briefly explain the closed loop identification of the respiratory control system.	CO2	PO2	10

UNIT - V						
	9	a)	Enumerate the advantages of the frequency response analysis.	CO3	PO3	08
		b)	Define the following terms i)Gain Margin ii)Phase margin iii)Gain crossover frequency iv)Phase crossover frequency.	CO3	PO3	04
		c)	Describe the frequency response of circulatory control system model.	CO3	PO3	08
		OR				
	10	a)	Plot the Bode diagram for the following transfer function $G(s) = \frac{10}{s(1+0.4s)(1+0.1s)}$ and obtain the gain and phase cross over frequencies.	CO3	PO3	14
		b)	Discuss the frequency response of glucose –insulin regulation.	CO3	PO3	06

B.M.S.C.E. - EVEN SEM 2024-25