

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Medical Electronics Engineering

Duration: 3 hrs.

Course Code: 23MD5PE1DV

Max Marks: 100

Course: Digital System Design Using Verilog

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	With necessary block diagram, explain different design methodologies in digital design. Also show the design hierarchy for ripple carry counter using its building blocks.	CO1	PO1	10
		b)	Along with example, illustrate Verilog ports.	CO1	PO1	10
OR						
	2	a)	Explain Verilog data types with an example for each.	CO1	PO1	10
		b)	Perform the following operations If $A = 1101010$, $B = 1011010$, $C = 1010$ i. $Y1 = \{C, B, A\}$ ii. $Y2 = A^B$ iii. $Y3 = A>>3$ iv. $Y4 = \sim (\&B)$ v. $Y5 = A\&(\sim B)$ vi. $Y6 = A\sim^B$	CO1	PO1	10
UNIT - II						
	3	a)	Develop Verilog code for 4:1 MUX using (i) Conditional operator (ii) Structural modeling.	CO2	PO2	12
		b)	Develop Verilog code for half adder.	CO1	PO1	08
OR						
	4	a)	Design and hence write the Verilog code for 2-bit X 2-bit Combinational Array Multiplier.	CO2	PO2	10
		b)	Develop Verilog code for full subtractor using structural modeling.	CO2	PO2	10

UNIT - III					
5	a)	Develop Verilog code for (i) 8:1 MUX (ii) 2:4 decoder using behavioral modeling.	CO2	PO2	10
	b)	Develop Verilog code for (i) D FF (ii) T FF.	CO2	PO2	10
OR					
6	a)	Develop Verilog code for (i) 4:2 priority encoder (ii) 4-bit comparator using behavioral modeling.	CO2	PO2	10
	b)	Differentiate between ‘always’ and ‘initial’ statements used in behavioral modeling with an example for each.	CO1	PO1	10
UNIT - IV					
7	a)	What is an FSM. Differentiate between the different models.	CO3	PO3	10
	b)	Design “101” sequence detector with overlapping using Mealy FSM.	CO3	PO3	10
OR					
8	a)	Write a Verilog code to implement 3 bit Binary to Gray code conversion.	CO3	PO3	10
	b)	Design a sequence detector to detect the sequence “1111” (overlapped) and describe the Verilog behavior.	CO3	PO3	10
UNIT - V					
9	a)	Implement the functions f1 and f2 using PLA. $f1 = \Sigma m (1,2,3,7)$ $f2 = \Sigma m (0,1,2,6)$.	CO3	PO3	12
	c)	Differentiate digital design implementation using FPGA and CPLD with necessary examples.	CO1	PO1	08
OR					
10	a)	With a neat diagram analyse the CPLD implementation.	CO1	PO1	10
	b)	Differentiate between CPLDs, FPGA, and ASIC in terms of design implementation.	CO1	PO1	10
