

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Medical Electronics Engineering

Duration: 3 hrs.

Course Code: 23MD5PE1DV

Max Marks: 100

Course: Digital System Design Using Verilog

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	With the help of a flow chart, explain the typical Design flow in Verilog for designing VLSI IC circuits	CO1	PO1	10
	b)	Discuss briefly the 4 levels of abstraction in digital design.	CO1	PO1	10
OR					
2	a)	Explain the different design methodologies employed in Verilog. Give their merits and demerits.	CO1	PO1	10
	b)	Explain all the available data types in Verilog with examples.	CO1	PO1	10
UNIT - II					
3	a)	Write a dataflow description in Verilog for a 3-bit carry look ahead adder.	CO2	PO2	08
	b)	Design and write a structural code for a full adder by taking half adder instances in the main module. Write the lower-level module using dataflow description.	CO2	PO2	12
OR					
4	a)	Write a Verilog code to implement a half subtractor.	CO2	PO2	10
	b)	Write a Verilog code for 2 to 4 decoder using dataflow and gate level descriptions.	CO2	PO2	10
UNIT - III					
5	a)	What are the different procedural assignment statements used in Verilog? With an appropriate example, bring out their differences?	CO3	PO3	10
	b)	Write a Verilog behavioral description to implement SR flip-flop.	CO3	PO3	10
OR					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	6	a)	Write a Verilog behavioral description to implement JK- flip-flop.	CO3	PO3	10
		b)	Explain the following control statement with an example i)if.... else statement ii) for loop	CO1	PO1	10
UNIT - IV						
	7	a)	With neat blocks diagrams explain the different types of FSM?	CO1	PO1	10
		b)	Draw the state level diagram and develop the Verilog RTL for an overlapping Moore state machine which produces output as '1' if the input bit stream is "101" with neat indentation, comments and header.	CO3	PO3	10
OR						
	8	a)	Draw the state level diagram and develop the Verilog RTL for an overlapping Moore state machine which produces output as '1' if the input bit stream is "101" with neat indentation, comments and header.	CO3	PO3	10
		b)	Write a Verilog code to implement 3 bit Binary to Gray code conversion.	CO2	PO2	10
UNIT - V						
	9	a)	What are PAL devices? With neat diagrams, explain the architecture of any CPLD.	CO1	PO1	10
		b)	Implement the functions f1 and f2 using PLA of appropriate size. $f1 = \Sigma m (1,2,3,7)$ $f2 = \Sigma m (0,1,2,6)$. Draw PLA Table.	CO3	PO3	10
OR						
	10	a)	What is the role of FPGAs in ASIC market? Write a note on FPGA technologies.	CO1	PO1	10
		b)	Compare the following: CPLDS, FPGA and ASIC.	CO1	PO1	10
