

B.M.S. College of Engineering, Bengaluru-560019

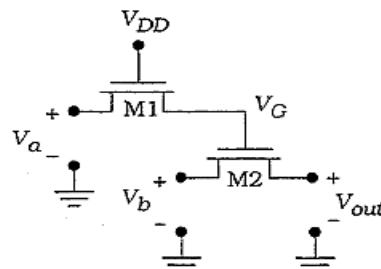
Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

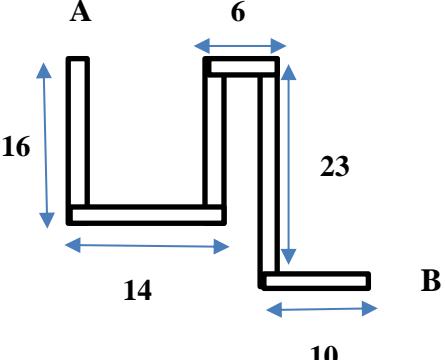
Programme: B.E.

Branch: Medical Electronics Engineering

Course Code: 22MD5PE1VL


Course: VLSI DESIGN

Semester: V


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Design a CMOS logic Gate for the function:</p> $f(a, b, c) = \overline{a \cdot (b + c)}$ <p>using minimum number of transistors.</p>	CO1	PO1	08
	b)	<p>Design the following using 8:1 MUX:</p> <ul style="list-style-type: none"> i) CMOS NAND3 gate ii) CMOS NOR3 gate 	CO1	PO1	06
	c)	<p>Discuss why PMOS transistors are often preferred for implementing logic 1, while NMOS transistors are favored for logic 0.</p>	CO1	PO1	06
OR					
2	a)	<p>The output of a nFET is used to drive the gate of another nFET as shown in Fig.2a. Assume that $V_{DD} = 3.3V$ and $V_{Th} = 0.6 V$. Find the output voltage V_{out} when the input voltages are at the following values:</p> <ul style="list-style-type: none"> i) $V_a = 3.3 V$ and $V_b = 3.3 V$ ii) $V_a = 0.5 V$ and $V_b = 3.0 V$ iii) $V_a = 2.0 V$ and $V_b = 2.5 V$ iv) $V_a = 3.3 V$ and $V_b = 1.8 V$ 	CO2	PO3	08
	<p>Fig.2a</p>				
	b)	<p>Consider two input XOR function $a \oplus b$ to design:</p> <ul style="list-style-type: none"> i) XOR gate using 4:1 MUX ii) 2 input XNOR by modifying the circuit. iii) A full adder with inputs a, b, c to calculate the sum bit, $S = a \oplus b \oplus c$ 	CO2	PO3	08
	c)	<p>Explain AND & OR logic operation using assert high switches and verify the truth table.</p>	CO1	PO1	04

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
3	a)	<p>Derive the relationship between sheet resistance and line resistance, emphasizing how sheet resistance influences the overall line resistance. For the interconnect pattern shown in Fig. 3a, the line has a width of 1 Unit and the sheet resistance is $R_s = 25\Omega$. Find the resistance from A to B if each corner square contributes a factor of 0.625 of a “straight-path” square.</p> <p>Fig.3a</p>	CO3	PO2	08
	b)	<p>A sample of silicon is doped with Arsenic with $N_d = 4 \times 10^{17} \text{ cm}^{-3}$.</p> <ol style="list-style-type: none"> Find the majority carrier density Find the minority carrier density Calculate the electron and hole mobilities and then find the conductivity of the sample. 	CO3	PO2	06
	c)	<p>Define Euler graph and outline the key characteristics using an example.</p>	CO3	PO2	06
	OR				
4	a)	<p>Consider the logic function $F = \text{not}(a+b.c)$</p> <p>Design the CMOS logic gate and layout that provides this function.</p>	CO2	PO3	07
	b)	<p>Describe the primary layers found in a CMOS integrated circuit, including the semiconductor substrate, gate oxide, polysilicon, and metal layers. What is the function of each layer?</p>	CO2	PO3	06
	c)	<p>Describe the factors that influence the layout geometry of CMOS gates, including transistor sizing, spacing, and interconnect routing.</p>	CO2	PO3	07
UNIT - III					
5	a)	<p>Describe the typical DC voltage transfer characteristics (VTC) of a CMOS inverter, highlighting the key regions and important voltage levels.</p>	CO3	PO2	08
	b)	<p>Find the ratio β_n / β_p needed to obtain an inverter midpoint voltage of $V_M = 1.3V$ with a power supply of 3V. Assume that $V_{Tn} = 0.6V$ and $V_{Tp} = -0.82V$. What would be the relative device sizes if $K'n = 110\mu\text{A/V}^2$ and the mobility values are related by $\mu_n = 2.2\mu_p$?</p>	CO3	PO2	06

	c)	Discuss the voltage transfer characteristics (VTC) of a CMOS NAND2 gate and derive the expression for V_M for the case of simultaneous switching.	CO3	PO2	06
		OR			
6	a)	Identify the sources of power dissipation in a CMOS inverter. Justify your answer to say the dynamic and static power dissipation differs from each other.	CO3	PO2	07
	b)	What role does parasitic capacitance play in the DC characteristics and switching behavior of CMOS gates? Discuss its impact on performance.	CO3	PO2	07
	c)	With proper analysis prove $k'n/k'p = \mu n/\mu p = r$.	CO3	PO2	06
		UNIT - IV			
7	a)	Explain the role of sheet resistance in the MOS transistors within a CMOS inverter by using a formula for channel resistance.	CO4	PO4	06
	b)	Discuss the significance of area capacitance in the performance of integrated circuits and derive the formula for calculating area capacitance.	CO4	PO4	08
	c)	Describe about the methods for driving large capacitive loads.	CO4	PO4	06
		OR			
8	a)	Estimate the rise time and fall time delay of a CMOS inverter using appropriate circuit model.	CO4	PO4	08
	b)	Evaluate the propagation delay through the cascaded pass transistors network.	CO4	PO4	06
	c)	Explain the electrical constraints that play a crucial role in determining the appropriate layers in CMOS technology	CO4	PO4	06
		UNIT - V			
9	a)	Explain the primary scaling factors and their effect on various key parameters of MOS FET devices	CO4	PO4	08
	b)	Discuss on the role of interconnect and contact resistance play in influencing the performance and scalability of CMOS circuits	CO4	PO4	06
	c)	Illustrate the nature of and approach to structured design using parity generator as an example.	CO4	PO4	06
		OR			
10	a)	Discuss the limitations of scaling (any three)	CO4	PO4	06
	b)	Analyze the guidelines to be followed for large system designs in MOS technology.	CO4	PO4	06
	c)	Discuss how layout techniques (e.g., floorplanning, routing) are impacted by scaling. What design rules become critical in high-density layouts?	CO4	PO4	08
