

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

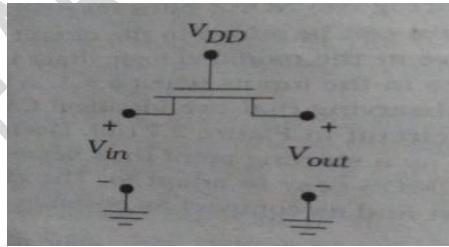
Autonomous Institute Affiliated to VTU

July 2024 Semester End Main Examinations

Programme: B.E.

Branch: Medical Electronics Engineering

Course Code: 22MD5PE1VL


Course: VLSI DESIGN

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Design a CMOS logic gate for the function $F = \text{not} (a.b + a.c + b.d)$ using minimal transistor count.	CO1	PO1	06
	b)	Design a 4:1 MUX using three 2:1 TG multiplexors.	CO1	PO1	06
	c)	Suppose that $V_{DD} = 5$ V and $V_{Th} = 0.7$ V. Find the output voltage V_{out} of the nFET in Figure 1.c for the following input voltage values: i) $V_{in} = 2$ V ii) $V_{in} = 4.5$ V iii) $V_{in} = 3.5$ V iv) $V_{in} = 0.7$ V	CO1	PO1	08
 Figure 1.c					
OR					
2	a)	With a neat diagram explain the CMOS NOR2 gate functionality.	CO1	PO1	06
	b)	Design a TG-based 2-to-1 multiplexor and explain its working	CO1	PO1	06
	c)	Consider the 2-input XOR function a XOR b. i) Design an XOR gate using a 4:1 MUX. ii) Modify the circuit in (i) to produce a 2-input XNOR. iii) A full adder accepts inputs a, b and c and calculates the sum bit $s = a \text{ XOR } b \text{ XOR } c$. Use MUX-based gates to design a circuit with this output.	CO1	PO1	08
UNIT - II					
3	a)	Consider the logic function $F = \text{not}(a+b.c)$	CO2	PO3	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

		Design the CMOS logic gate and layout that provides this function.			
	b)	An interconnect line runs over an insulating oxide layer that is 10,000 Å thick. The line has a width of 0.5 μm and is 40 μm long. The sheet resistance is known to be 25Ω . i) Find the line resistance. ii) Find the line capacitance. Use $\epsilon_{\text{ox}}=3.453 \times 10^{13} \text{ F/cm}^2$, and express your answer in femto farads where $1\text{fF}=10/15\text{F}$.	CO2	PO3	06
	c)	Construct the Euler's graph for the function $g = \text{not } (a+b.c)$.	CO2	PO3	06
UNIT - III					
4	a)	With neat sketches explain the voltage transfer curve for the NOT gate.	CO3	PO2	06
	b)	With neat diagram explain the NAND2 VTC analysis along with the transition table.	CO3	PO2	07
	c)	With proper analysis prove $k'n/k'p = \mu_n/\mu_p = r$.	CO3	PO2	07
UNIT - IV					
5	a)	With a neat sketch derive the sheet resistance equation and give two reasons about its importance.	CO3	PO2	07
	b)	With simple analysis estimate the rise-time for a CMOS inverter.	CO3	PO2	07
	c)	Discuss the ways to route data and control signals for choice between the layers.	CO3	PO2	06
OR					
6	a)	With simple analysis estimate the fall-time for a CMOS inverter.	CO3	PO2	07
	b)	Calculate the delay for driving large capacitive loads.	CO3	PO2	07
	c)	Discuss on the design of long polysilicon wires.	CO3	PO2	06
UNIT - V					
7	a)	Calculate the effects of scaling for gate area, gate capacitance, parasitic capacitance, channel resistance and gate delay.	CO4	PO4	10
	b)	Discuss the limitations of scaling (Any two).	CO4	PO4	05
	c)	Analyze the guidelines to be followed for large system designs in MOS technology.	CO4	PO4	05
