

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2024 Semester End Main Examinations

Programme: B.E.

Branch: Medical Electronics Engineering

Course Code: 22MD5PCESD

Course: Embedded System Design

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Differentiate between Embedded and General-purpose computing system based on their hardware design, performance and applications.			<i>CO1</i>	<i>PO1</i>	06
		b)	Analyze I2C protocol used for on-board communication in embedded systems for a single master multiple slave mode using relevant timing diagrams.			<i>CO1</i>	<i>PO1</i>	06
		c)	Explain the Serial Peripheral Interface (SPI) protocol, highlighting its fundamental characteristics. Mention the hardware connections necessary for interfacing a microcontroller with an SPI device, specifying the functions of each SPI pin.			<i>CO1</i>	<i>PO1</i>	08
			OR					
	2	a)	Examine the significance of a brownout circuit in embedded systems, detailing its purpose and functionality.			<i>CO1</i>	<i>PO1</i>	06
		b)	Discuss the key considerations in setting the timeout period for a Watchdog Timer and explain how it helps to prevent system malfunctions.			<i>CO1</i>	<i>PO1</i>	06
		c)	With a generic block diagram of embedded system hardware, briefly explain the functionality of each block.			<i>CO1</i>	<i>PO1</i>	08
			UNIT - II					
	3	a)	Inspect the process of source file to object file translation with the help of a neat block diagram.			<i>CO2</i>	<i>PO2</i>	06
		b)	Analyze the FSM model for an automatic tea/coffee vending machine for the following requirement: 1. The tea/coffee vending is initiated by user inserting a 5rupee coin. 2. After inserting the coin, the user can either select 'Coffee' or 'Tea' or press 'Cancel' to cancel the order and take back the coin.			<i>CO2</i>	<i>PO2</i>	06

	c)	Explain the Operational and Non-operational quality attributes of embedded systems, specifying two attributes for each type.	CO2	PO2	08																				
		UNIT - III																							
4	a)	Mention the files generated during the cross-compilation of an Embedded C file? Explain them in detail.	CO2	PO2	10																				
	b)	Explain the significance of In-Circuit Emulator (ICE) in firmware debugging with the help of a neat diagram.	CO2	PO2	06																				
	c)	List the major details stored in an object file created during cross compiling.	CO2	PO2	04																				
		UNIT - IV																							
5	a)	Distinguish between the properties of Process and Thread in the context of RTOS based embedded system.	CO3	PO2	04																				
	b)	For the given data, based on the average waiting time and average turnaround time, evaluate the performance of a) Round Robin algorithm and b) Priority based algorithm in Pre-emptive Scheduling. * (0 - highest priority, 3 - lowest priority) *Time slice = 4ms. <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Process</th> <th>Arrival Time</th> <th>Execution Time</th> <th>Priority</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>0</td> <td>10</td> <td>1</td> </tr> <tr> <td>2</td> <td>6</td> <td>5</td> <td>3</td> </tr> <tr> <td>3</td> <td>6</td> <td>7</td> <td>2</td> </tr> <tr> <td>4</td> <td>5</td> <td>6</td> <td>0</td> </tr> </tbody> </table> * Assume all the processes contain only CPU operation and no I/O operations are involved.	Process	Arrival Time	Execution Time	Priority	1	0	10	1	2	6	5	3	3	6	7	2	4	5	6	0	CO3	PO2	10
Process	Arrival Time	Execution Time	Priority																						
1	0	10	1																						
2	6	5	3																						
3	6	7	2																						
4	5	6	0																						
	c)	Examine a deadlock scenario involving two active tasks and propose a strategy to resolve such a situation.	CO3	PO2	06																				
		OR	CO3	PO2																					
6	a)	Explain the criteria involved in choosing a Real-Time Operating System (RTOS), emphasizing both functional and non-functional requirements.	CO3	PO2	05																				
	b)	Three processes with process IDs P1, P2, P3 with estimated completion time 10, 5, 7 milliseconds respectively enter the ready queue together. A new process P4 with estimated completion time 2ms enters the 'Ready' queue after 2ms. Assume all the processes contain only CPU operation and no I/O operations are involved. Evaluate the performance of SJF algorithm in the case of Non-preemptive and Pre-emptive scheduling.	CO3	PO2	10																				
	c)	Define the semaphore primitive. Distinguish between binary and counting semaphores	CO3	PO2	05																				
		UNIT - V																							
7	a)	Analyze the hardware and software architecture of an embedded system, taking the adaptive cruise control system in a car as a case	CO4	PO3	10																				

		study. Discuss key considerations for achieving optimal performance and safety in adaptive cruise control.			
	b)	Explore the hardware and software architecture of an embedded system using a digital camera as a case study. Discuss the challenges faced in designing both the hardware and software components, and elaborate on the key considerations necessary for achieving efficiency and effectiveness in the overall system.	CO4	PO3	10

REAPPEAR EXAMS 2023-24