

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Medical Electronics Engineering

Duration: 3 hrs.

Course Code: 23MD5PCESD / 22MD5PCESD

Max Marks: 100

Course: Embedded System Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks
1	a)	Consider, a space probe software hangs and needs to be rebooted. Which hardware should be part of such an embedded system? Describe its operation.	CO1	PO1	06
	b)	Assume that there are multiple devices in a plant at 1m distance to be connected in multi-master, multi-slave, half duplex mode to transmit data in packets at 100K baud. In the design of such a system which protocol would have you used? Discourse its operation. What are its disadvantages?	CO1	PO1	09
	c)	How embedded system is different from general purpose computing system?	CO1	PO1	05
		OR			
2	a)	Design and explain the working of a hardware circuit for an embedded system to prevent the microcontroller from unexpected program execution behavior when the supply voltage falls below a specified voltage.	CO1	PO1	06
	b)	Discuss the serial data transmission mechanism using full duplex mode to interface LCD with a microcontroller. What are its advantages?	CO1	PO1	09
	c)	Discuss the role of Cache memory in embedded systems.	CO1	PO1	05
		UNIT - II			
3	a)	Discuss operational quality attributes of an embedded system and exemplify their significance for medical embedded systems.	CO1	PO1	10
	b)	Develop and explain the concurrent processing model for a Seat Belt Warning System for the following criteria i. When the ignition is turned on and the seat belt is not fastened within 10 seconds of ignition ON, the system	CO2	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		<p>generates an alarm signal for 5 seconds</p> <p>ii. The Alarm is turned off when the alarm time expires after 5 seconds or if the driver fastens the belt or if the ignition switch is turned off, whichever happens first.</p>			
		OR			
4	a)	Discuss nonoperational quality attributes of an embedded system and exemplify their significance for medical embedded systems.	CO1	PO1	10
	b)	<p>Develop and explain the finite state machine model for an automatic chocolate vending machine for the following requirements</p> <ol style="list-style-type: none"> 1. Insert a coin of Rs 5 into the vending machine to get a coffee chocolate or milk chocolate. 2. press 'Cancel' to cancel the order 	CO2	PO2	10
		UNIT - III			
5	a)	Differentiate between Emulator and simulator.	CO1	PO1	07
	b)	What do you mean by board bring up an embedded system environment?	CO1	PO1	06
	c)	How In System programming is different from out of circuit programming?	CO1	PO1	07
		OR			
6	a)	Discuss the significance of various files generated during cross compilation	CO3	PO1	07
	b)	Elaborate on debugging process in embedded system development	CO3	PO1	06
	c)	Discuss the binary executable file generation and its format in embedded system environment	CO3	PO1	07
		UNIT - IV			
7	a)	What is critical section? Discuss the different techniques for controlling access to critical section?	CO3	PO2	07
	b)	Discuss how Microkernel is different from Monolithic Kernel. Which one is widely used in real-time operating systems, and reason why?	CO3	PO2	05

		c)	<p>Assume you have the following jobs to execute with one processor, with the jobs arriving in the order listed here. Suppose a system uses RR scheduling with a quantum of 5. Create a Gantt chart illustrating the execution of these processes. What is the turnaround time for each process? What is the wait time for each process? Also calculate the average waiting time and average turnaround time.</p> <table border="1"> <thead> <tr> <th>process ID</th><th>Burst Time</th><th>Arrival Time</th></tr> </thead> <tbody> <tr> <td>1</td><td>7</td><td>0</td></tr> <tr> <td>2</td><td>4</td><td>1</td></tr> <tr> <td>3</td><td>15</td><td>2</td></tr> <tr> <td>4</td><td>11</td><td>3</td></tr> <tr> <td>5</td><td>20</td><td>4</td></tr> <tr> <td>6</td><td>9</td><td>4</td></tr> </tbody> </table>	process ID	Burst Time	Arrival Time	1	7	0	2	4	1	3	15	2	4	11	3	5	20	4	6	9	4	CO3	PO2	08
process ID	Burst Time	Arrival Time																									
1	7	0																									
2	4	1																									
3	15	2																									
4	11	3																									
5	20	4																									
6	9	4																									
			OR																								
	8	a)	Discourse the functions of a Real time kernel.	CO3	PO2	07																					
		b)	Three processes with process IDs P1, P2, P3 with estimated completion time 10, 5, 7 milliseconds respectively enter the ready queue together in the order P2, P3, P1. Process P4 with estimated execution time 4 milliseconds enters the Ready queue after 6 milliseconds. Calculate the waiting time and Turn Around Time (TAT) for each process and the Average waiting time and Turn Around Time (Assuming there is no I/O waiting for the processes) in the LIFO scheduling.	CO3	PO2	08																					
		c)	Describe the various states of a task in RTOS.	CO3	PO2	05																					
			UNIT - V																								
	9	a)	With necessary sketches, describe hardware and software requirements for an Automated chocolate vending machine	CO4	PO3	10																					
		b)	Develop multiple tasks and their synchronization model for ACVM using semaphores and mailbox messages. Deliberate the flow of operations	CO4	PO3	10																					
			OR																								
	10	a)	Discuss the hardware architecture of a digital camera giving function of each block.	CO4	PO3	10																					
		b)	Identify the necessary software components to design a digital camera	CO4	PO3	10																					