

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Medical Electronics Engineering

Duration: 3 hrs.

Course Code: 23MD5PCMIM / 22MD5PCMIM

Max Marks: 100

Course: Medical Imaging Modalities

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	List out all the need for modalities and multimodalities for medical applications?	<i>CO1</i>	<i>PO</i> 2	05
	b)	Explain the process involved in X-ray imaging. Digital subtraction angiography (DSA) with relevant diagram.	<i>CO1</i>	<i>PO2</i>	10
	c)	Explain the history on discovering X-Ray leading to Medical Application	<i>CO1</i>	<i>PO2</i>	05
OR					
2	a)	Explain the basic Scientific principle involved in X-ray with a relevant diagram	<i>CO1</i>	<i>PO2</i>	10
	b)	List and explain the clinical applications of X-ray Imaging.	<i>CO1</i>	<i>PO2</i>	10
UNIT - II					
3	a)	Define the following wrt CT imaging radiation dose a. CTDI and its unit b. DLP and its unit c. Effective dose and its unit	<i>CO2</i>	<i>PO2</i>	10
	b)	Explain the Computed Tomography Maximum Intensity projection reconstruction techniques for medical applications.	<i>CO2</i>	<i>PO2</i>	10
OR					
4	a)	Explain the evolution of CT scanners from single source scanner to dual source scanner?	<i>CO2</i>	<i>PO2</i>	10
	b)	How do contrast agents, such as Barium and Iodine, enhance the performance of CT scans?	<i>CO2</i>	<i>PO2</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
5	a)	Explain the relationship between frequency and wavelength in ultrasound.	CO3	PO3	10
	b)	Examine the fundamental concepts of reflection, refraction, and attenuation in the context of diagnostic ultrasound imaging.	CO3	PO3	10
OR					
6	a)	Discuss the phenomena of Posterior Enhancement and Posterior Shadowing in B-Mode ultrasound imaging.	CO3	PO3	10
	b)	Explain the Doppler Effect in ultrasound and elucidate the fundamental principles behind it.	CO3	PO3	10
UNIT - IV					
7	a)	Explain the Scientific principle of MRI.	CO3	PO3	10
	b)	Explain the properties of Fourier transform applied to MRI	CO3	PO3	10
OR					
8	a)	List and explain the Clinical application of MRI.	CO3	PO3	10
	b)	Write a note on functional MRI	CO3	PO3	10
UNIT - V					
9	a)	Explain the basic principle of Diagnostic nuclear medicine.	CO2	PO2	10
	b)	Write a note on 1.SPECT 2.PET	CO2	PO2	10
OR					
10	a)	Explain the concept of PET image reconstruction.	CO2	PO2	10
	b)	Explain attenuation correction using in imaging	CO2	PO2	10
