

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2025 Semester End Make-Up Examinations

Programme: B.E.

Semester: V

Branch: Medical Electronics Engineering

Duration: 3 hrs.

Course Code: 23MD5PCSGP / 22MD5PCSGP

Max Marks: 100

Course: Signal Processing

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define Signal. Explain the of Digital signal Processing steps with neat block diagram.	CO1	PO1	08
	b)	Consider the analog signal $Xa(t)=3\cos 100\pi t$ i. Determine the minimum sampling rate required to avoid aliasing ii. Suppose that the signal is sampled at the rate of $Fs = 200 \text{ Hz}$. What is the discrete-time signal obtained after sampling? iii. Suppose that the signal is sampled at the rate of $Fs = 75 \text{ Hz}$. What is the discrete time signal obtained after sampling? What is the Frequency $0 < F < Fs/2$ of a sinusoid that yields samples identical to those obtained in part(iii)?.	CO2	PO2	08
	c)	Differentiate between i) Deterministic Versus Random signals ii) Continuous -time versus Discrete time signal	CO2	PO2	04
OR					
2	a)	A Continuous-time signal $x(t)$ is shown in the below figure. Sketch and label each of the following signals I. $x(t-2)$ II. $x(2t)$ III. $x(t/2)$ IV. $x(-t)$	CO2	PO2	08
	b)	Compute the convolution of two sequence $x_1(n)$ and $x_2(n)$, given below $x_1(n) = \{1,2,3\}$ and $x_2(n) = \{1,2,3,4\}$	CO3	PO3	06
	c)	Explain the following Properties of systems I. Causality II. Invertibility	CO2	PO2	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
3	a)	Find the Complex Fourier Coefficient for $x(t)$ given below $x(t) = \cos\left(\frac{2\pi}{3}t\right) + 2\cos\left(\frac{5\pi}{3}t\right)$	CO3	PO3	06
	b)	Find the Complex Fourier Coefficient, the power spectrum and the total power for $x(t)$ defined below $x(t) = 5 \sin(5t) + 7 \cos(6t) + 3$ Also, find the total power I. If $x(t)$ were a voltage across 10,000 ohms II. If $x(t)$ were a current through 0.01 ohm	CO3	PO3	08
3	c)	Find the Z-transform of $x(n) = \alpha^{-n}u(-n-1)$	CO3	PO3	06
OR					
4	a)	Find the inverse Z-transforms of $X(z) = \frac{(2+3z^{-2}+2z^{-3})}{z^2+4z+3}$	CO3	PO3	08
	b)	Find the Fourier transform of the function $x(t) = te^{-2t}u(t)$	CO3	PO3	08
	c)	Explain the Frequency shift property of Fourier transform.	CO3	PO3	04
UNIT - III					
5	a)	Perform the circular convolution of the following two sequences $x_1(n) = \{2, 1, 2, 1\}$ ↑ $x_2(n) = \{1, 2, 3, 4\}$ ↑	CO3	PO3	10
	b)	Compute the DFT of the four-point sequence $X(n) = \{0, 1, 2, 3\}$	CO2	PO2	10
OR					
6	a)	Determine DFT of sequence $x(n) = \frac{1}{3}$ for $0 \leq n \leq 2$ for $N=4$. Plot magnitude and Phase spectrum	CO2	PO2	10
	b)	Define DFT and Explain the three main properties of DFT.	CO2	PO2	10
UNIT - IV					
7	a)	Develop an 8 point DIT-FFT algorithm and Draw a signal flow graph. Determine the DFT of the sequence $X(n) = \{1, 1, 1, 1, 0, 0, 0, 0\}$	CO3	PO3	10
	b)	Prove the following: I. Periodicity property of W_N : $W_N^{k+N} = W_N^k$ II. Symmetry Property of W_N : $W_N^{k+N/2} = -W_N^k$	CO3	PO3	10

OR						
	8	a)	Obtain the 8-point DFT of the following sequence using Radix-2 DIF-FFT algorithm., Show all the results along signal flow graph $X(n)=\{2,1,2,1\}$	CO3	PO3	10
		b)	Calculate the IDFT of $X(k)$ by inverse Radix-2 DIT-FFT algorithm. $X(k)=\{0.28284-j28284,0,0,0,0,0.28284+j28284\}$	CO3	PO3	10
UNIT - V						
	9	a)	Realize the following system function in cascade form $H(Z) = 1 + \frac{3}{4}Z^{-1} + \frac{17}{8}Z^{-2} + \frac{3}{4}Z^{-3} + Z^{-4}$	CO3	PO3	10
		b)	Derive an expression for a system function, if the unit sample response $h(n)$ is obtained using Frequency sampling technique.	CO3	PO3	10
OR						
	10	a)	Design an FIR linear phase filter using kaiser window to meet the following specifications $0.99 \leq H(e^{jw}) \leq 1.01, \quad 0 \leq \omega \leq 0.19\pi$ $ H(e^{jw}) \leq 0.01, \quad 0.21\pi \leq \omega \leq \pi$	CO3	PO3	10
		b)	Design a second order lowpass butterworth filter with cutoff frequency of 1kHz and sampling frequency of 10^4 samples/sec by bilinear transform	CO3	PO3	10
