

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Medical Electronics Engineering

Duration: 3 hrs.

Course Code: 23MD5PCSGP / 22MD5PCSGP

Max Marks: 100

Course: Signal Processing

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Discuss the classifications of signals with example.	CO1	PO1	08
		b)	Determine the energy of the signal $x(t) = \begin{cases} t & 0 \leq t \leq 1 \\ 2-t & 1 \leq t \leq 2 \\ 0 & \text{otherwise} \end{cases}$	CO1	PO1	06
		c)	Determine whether the following signals are periodic or not. If periodic find its fundamental period. i) $x(t) = \cos\left(\frac{\pi}{3}t\right) + \sin\left(\frac{\pi}{4}t\right)$ ii) $x(n) = \sin(2n)$	CO1	PO1	06
OR						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	Discuss the properties of systems with example.	CO1	PO1	08
		b)	Evaluate the discrete time convolution sum $y(n) = x(n) * h(n)$ where $x(n) = a^n u(n)$ and $h(n) = u(n)$ for $0 < a < 1$.	CO1	PO1	06
		c)	Find the natural response for the system described by the following difference equation $y(n) - \frac{9}{16}y(n-2) = x(n-1)$ with $y(-1) = 1$ and $y(-2) = -1$.	CO1	PO1	06
UNIT - II						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	3	a)	State and prove the following properties of discrete time Fourier series i) Time shift ii) Frequency shift	CO2	PO2	06
		b)	Obtain the frequency response of a discrete time LTI system with impulse response $h(n) = \left(\frac{1}{2}\right)^n u(n)$	CO2	PO2	06
		c)	Find the Fourier Transform of the signal $x(t) = e^{-at} u(t)$. Sketch Magnitude and Phase spectrum.	CO2	PO2	08

OR						
4	a)	Discuss the properties of ROC in Z-transform.	CO2	PO2	06	
	b)	Determine Z-transform of $h(n) = -u(n-1) + \left(\frac{1}{2}\right)^n u(n)$. Draw its ROC.	CO2	PO2	08	
	c)	A causal system has input $x[n]$ and output $y[n]$ as given below. Determine its impulse response. $x[n] = \delta[n] + \frac{1}{4} \delta[n-1] - \frac{1}{8} \delta[n-2]$; $y[n] = \delta[n] - \frac{3}{4} \delta[n-1]$	CO2	PO2	06	
UNIT - III						
5	a)	What is Sampling? Explain the process of reconstruction of signal in frequency domain.	CO3	PO3	08	
	b)	Compute the 8-point DFT of the sequence $x(n) = \{1,1,1,1\}$	CO3	PO3	08	
	c)	The first 5 points of the eight-point DFT of a real valued sequence are $(0.25, 0.125-j0.3018, 0, 0.125-j0.0518, 0)$. Determine the remaining three points.	CO3	PO3	04	
OR						
6	a)	State and prove the following properties of DFT i) Circular Time Shift ii) Circular Convolution	CO3	PO3	08	
	b)	Determine the circular convolution between $x(n) = [2,1,2,1]$ and $h(n) = [1,2,3,4]$.	CO3	PO3	06	
	c)	Compute 4-point DFT of the sequence $x(n) = [1,2,3,4]$. Sketch magnitude and phase spectrum.	CO3	PO3	06	
UNIT - IV						
7	a)	Find 4-point circular convolution of $x(n) = \{1,1,1,1\}$ and $h(n) = \{1,0,1,0\}$. use DFT method.	CO4	PO4	08	
	b)	A long sequence $x(n)$ is filtered through a filter with impulse response $h(n)$ to the output $y(n)$. If $x(n) = \{1,1,1,1,1,3,1,1,4,2,1,1,3,1\}$, $h(n) = \{1,-1\}$ Compute $y(n)$ using the overlap save technique. Assume $L=5$.	CO4	PO4	08	
	c)	Tabulate the number of complex multiplication and complex additions required for the direct computation of DFT and FFT algorithm for $N = 16$.	CO4	PO4	04	
OR						
8	a)	Develop decimation in time FFT algorithm to compute DFT. Draw signal flow graph for $N=8$	CO4	PO4	10	
	b)	Determine 8-point DFT of sequence $x(n) = \{1,1,0,0,-1,-1,0,0\}$ using DIT-FFT method.	CO4	PO4	10	

UNIT - V					
9	a)	Compare IIR and FIR filters.	CO5	PO5	04
	b)	If $Ha(s) = \frac{1}{(s+1)(s+2)}$, find the corresponding $H(Z)$ using impulse invariance method. Assume $T=0.1\text{sec}$.	CO5	PO5	06
	c)	Design a Butterworth filter using the bilinear transformation for the following specifications $0.8 \leq H(e^{j\omega}) \leq 1 \text{ for } 0 \leq \omega \leq 0.2\pi$ $ H(e^{j\omega}) \leq 0.2 \text{ for } 0.6\pi \leq \omega \leq \pi$	CO5	PO5	10
OR					
10	a)	Name the types of windows used in the design of FIR filters. Write the analytical equations and draw the magnitude response characteristics of each window.	CO5	PO5	10
	b)	The desired frequency response of a lowpass filter is given by, $H_d(e^{jw}) = H_d(w) = \begin{cases} e^{-j2w}; w < \frac{\pi}{4} \\ 0; \frac{\pi}{4} < w < \pi \end{cases}$ Determine the frequency response of the FIR filter if rectangular window is used for $N=5$.	CO5	PO5	10

B.M.S.C.E. - ODUSMA 2025