

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Medical Electronics Engineering

Duration: 3 hrs.

Course Code: 23MD6PE2VD

Max Marks: 100

Course: VLSI Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	With a neat diagram explain the CMOS NOR2 gate functionality.	CO1	PO1	06
	b)	Design a TG-based 2-to-1 multiplexor and explain its working.	CO1	PO1	06
	c)	Consider the 2-input XOR function a XOR b. i) Design an XOR gate using a 4:1 MUX. ii) Modify the circuit in (i) to produce a 2-input XNOR. iii) A full adder accepts inputs a, b and c and calculates the sum bit s=a XOR b XOR c. Use MUX-based gates to design a circuit with this output.	CO1	PO1	08
OR					
2	a)	Design a CMOS logic gate for the function $F = \text{not } (a.b + a.c + b.d)$ using minimal transistor count.	CO1	PO1	06
	b)	Design a 4:1 MUX using three 2:1 TG multiplexers.	CO1	PO1	06
	c)	Suppose that $V_{DD} = 5$ V and $V_{Th} = 0.7$ V. Find the output voltage V_{out} of the nFET in Figure 2.c for the following input voltage values: i) $V_{in} = 2$ V ii) $V_{in} = 4.5$ V iii) $V_{in} = 3.5$ V iv) $V_{in} = 0.7$ V	CO1	PO1	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

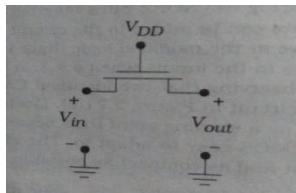


Figure 2.c

UNIT - II					
3	a)	Consider the logic function $F = \text{not}(a+b.c)$ Design the CMOS logic gate and layout that provides this function.	CO2	PO3	08
	b)	An interconnect line runs over an insulating oxide layer that is 10,000 Å thick. The line has a width of 0.5 μm and is 40 μm long. The sheet resistance is known to be 25Ω. i) Find the line resistance. ii) Find the line capacitance. Use $\epsilon_{ox}=3.453 \times 10^{-13}$ F/cm, and express your answer in femto farads where $1fF=10^{-15}F$.	CO2	PO3	06
	c)	Construct the Euler's graph for the function $g = \text{not}(a+b.c)$.	CO2	PO3	06
	OR				
4	a)	Describe the primary layers found in a CMOS integrated circuit, including the semiconductor substrate, gate oxide, polysilicon, and metal layers. What is the function of each layer?	CO2	PO3	06
	b)	Describe the factors that influence the layout geometry of CMOS gates, including transistor sizing, spacing, and interconnect routing.	CO2	PO3	07
	c)	Describe the process of constructing an Euler graph from a circuit netlist. How are nodes and edges represented?	CO2	PO3	07
UNIT - III					
5	a)	With neat sketches explain the voltage transfer curve for the NOT gate.	CO3	PO2	06
	b)	With neat diagram explain the NAND2 VTC analysis along with the transition table.	CO3	PO2	07
	c)	With proper analysis prove $k'n/k'p = \mu_n/\mu_p = r$.	CO3	PO2	07
	OR				
6	a)	Draw and explain the DC transfer characteristics of a CMOS NAND gate.	CO3	PO2	06
	b)	What role does parasitic capacitance play in the DC characteristics and switching behavior of CMOS gates? Discuss its impact on performance.	CO3	PO2	07
	c)	Identify the sources of power dissipation in a CMOS inverter. How do dynamic and static power dissipation differ?	CO3	PO2	07
UNIT - IV					
7	a)	With a neat sketch derive the sheet resistance equation and give two reasons about its importance.	CO3	PO2	07
	b)	With simple analysis estimate the rise-time for a CMOS inverter.	CO3	PO2	07
	c)	Discuss the ways to route data and control signals for choice between the layers.	CO3	PO2	06
	OR				
8	a)	With simple analysis estimate the fall-time for a CMOS inverter.	CO3	PO2	07
	b)	Calculate the delay for driving large capacitive loads.	CO3	PO2	07

		c) Discuss on the design of long polysilicon wires.	CO3	PO2	06
UNIT - V					
9	a)	Calculate the effects of scaling for gate area, gate capacitance, parasitic capacitance, channel resistance and gate delay.	CO4	PO4	10
	b)	Discuss the limitations of scaling (Any two).	CO4	PO4	05
	c)	Analyze the guidelines to be followed for large system designs in MOS technology.	CO4	PO4	05
		OR			
10	a)	Describe the significance of scaling factors (e.g., ℓ , W, V, and I) in the context of MOSFET performance. How can these factors be mathematically expressed for both the constant-field and constant-voltage scaling?	CO4	PO4	07
	b)	Explain how process variations and device matching become critical challenges as MOS devices are scaled down. How do these variations affect circuit performance?	CO4	PO4	07
	c)	Discuss how layout techniques (e.g., floorplanning, routing) are impacted by scaling. What design rules become critical in high-density layouts?	CO4	PO4	06
