

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Medical Electronics Engineering

Duration: 3 hrs.

Course Code: 23MD6PCBSP / 22MD6PCBSP

Max Marks: 100

Course: Biomedical Signal Processing

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Design an optimal Filter to remove noise from a signal, given that the signal and noise processes are independent, stationary, random processes.			<i>CO2</i>	<i>PO3</i>	10
		b)	Describe in detail how adaptive filtering can be applied for muscle artifact removal in ECG recordings. Include an example or case study.			<i>CO2</i>	<i>PO3</i>	10
	OR							
	2	a)	Explain the process of adaptive noise cancellation with the help of a block diagram. Apply it to remove maternal ECG interference from fetal ECG signals.			<i>CO2</i>	<i>PO3</i>	08
		b)	How does moving average filtering work in the time domain?			<i>CO2</i>	<i>PO3</i>	04
		c)	Explain the principle of Least Mean Squares (LMS) algorithm used in adaptive filtering.			<i>CO2</i>	<i>PO3</i>	08
	UNIT - II							
	3	a)	Differentiate between lossy and lossless compression. Write an expression for the Percent Root Mean Square difference (PRD)			<i>CO2</i>	<i>PO6</i>	08
		b)	Discuss various data compression techniques used in ECG signal processing. Compare at least two methods with respect to compression ratio, complexity, and signal distortion			<i>CO2</i>	<i>PO3</i>	12
	OR							
	4	a)	Determine the efficiency of the Huffman code. Given the following data set {1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7} derive the code words for the data using Huffman coding and compute the average word length required in Huffman coding			<i>CO3</i>	<i>PO2</i>	10

	b)	Describe how the Pan-Tompkins algorithm works for QRS detection.	CO3	PO3	10
		UNIT - III			
5	a)	Design a system for real-time ECG acquisition and processing, including signal filtering, QRS detection, and heart rate monitoring	CO3	PO3	10
	b)	Explain and implement a method to detect arrhythmias from ECG signals using RR interval analysis.	CO2	PO3	10
		OR			
6	a)	Illustrate the principle of working of a differentiation based QRS detection with suitable diagrams and equations	CO2	PO3	10
	b)	What do you mean by arrhythmia and with relevant block diagram explain portable arrhythmia monitoring system	CO2	PO3	10
		UNIT - IV			
7	a)	Explain how linear prediction can be used to reduce noise or artifacts in EEG recordings.	CO2	PO3	10
	b)	Describe the process of estimating AR coefficients using the Yule-Walker method.	CO2	PO3	10
		OR			
8	a)	Explain the correlation analysis of EEG signals and provide relevant applications	CO2	PO3	10
	b)	Discuss the use of matched filters and explain it's application in detecting P waves in ECG.	CO2	PO3	10
9	a)	Explain in detail about the probabilistic model suggested to estimate the occurrences of certain event and time spent in any stage of sleep?	CO2	PO3	10
	b)	How does the PSD elimination method help detect events and wave?	CO2	PO3	10
		OR			
10	a)	Explain the characteristics of EEG in sleep stages. Name one time-domain and one frequency-domain feature used for sleep stage classification	CO2	PO3	10
	b)	How can Markov Chains be used in modeling sleep stages using EEG data?	CO2	PO3	10
