

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

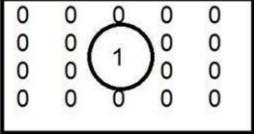
Programme: B.E.

Branch: Medical Electronics Engineering

Course Code: 22MD6PCMIP

Course: MEDICAL IMAGE PROCESSING

Semester: VI


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks												
1	a)	What will be the image file size for image having 576 rows, 768 columns and 256 gray levels? How many minutes would it take to transmit this image using a baud rate of 2400bits/sec?	CO1	PO1	04												
	b)	Consider the image segment shown below. Let $V = \{10, 11, 12\}$. Identify the shortest 4, 8 and m-path between pixels p and q and the path lengths.	CO1	PO1	06												
	c)	Let p and q are two pixels with spatial locations as (100,120) and (130,160) respectively. Compute i. Chess board distance ii. Manhattan distance	CO1	PO1	04												
	d)	Convert pixel values RGB(29,104,215) to HSI giving relevant equations . What is need of converting image data to different color models?	CO1	PO1	06												
UNIT-II																	
2	a)	Compute the new pixel values after performing Log transformation and Gamma correction on the below given image data. Explain the purpose of using these transformations.	CO2	PO1	07												
		<table border="1"> <tr> <td>15</td><td>29</td><td>40</td><td>8</td></tr> <tr> <td>201</td><td>215</td><td>210</td><td>58</td></tr> <tr> <td>178</td><td>169</td><td>150</td><td>230</td></tr> </table>	15	29	40	8	201	215	210	58	178	169	150	230			
15	29	40	8														
201	215	210	58														
178	169	150	230														

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>It is required to compress 4 bit retinal image based on the binarization results. Which algorithm is best suited for this purpose? Encode the image data given below considering contribution by specific bits.</p> <table border="1"> <tr><td>15</td><td>15</td><td>9</td><td>10</td><td>11</td><td>6</td><td>9</td><td>4</td></tr> <tr><td>9</td><td>12</td><td>15</td><td>7</td><td>1</td><td>3</td><td>5</td><td>5</td></tr> <tr><td>1</td><td>11</td><td>8</td><td>2</td><td>13</td><td>14</td><td>6</td><td>6</td></tr> </table>	15	15	9	10	11	6	9	4	9	12	15	7	1	3	5	5	1	11	8	2	13	14	6	6	CO2	PO1	07
15	15	9	10	11	6	9	4																						
9	12	15	7	1	3	5	5																						
1	11	8	2	13	14	6	6																						
	c)	Which image sharpening filter is isotropic in nature? Explain why?	CO2	PO1	06																								
		OR																											
3	a)	How will you perform edge enhancement through image smoothing? Discuss the steps in the algorithm.	CO2	PO1	07																								
	b)	Using suitable image enhancement algorithm how can you encode the below given image data? Discuss the objectives of this algorithm.	CO2	PO1	07																								
	c)	What will be new pixel values for the underlined pixels when 3x3 filter is used to remove salt and pepper noise from the given image data.	CO2	PO1	06																								
		UNIT - III																											
4	a)	How will you reduce multiplicative noise and enhance reflectance for a medical image captured in low ambient light. Discuss the algorithm and elaborate how illumination correction is achieved through the proposed algorithm.	CO2	PO1	10																								
	b)	Identify the filter represented and discuss its performance in performing image enhancement .	CO2	PO1	10																								
		UNIT - IV																											
5	a)	Discuss how image restoration is different from enhancement. Also represent and discuss the image restoration model.	CO2	PO2	05																								

	b)	<p>Consider the image segment given below. What will be the new pixel values of underlined pixels if Alpha trimmed mean filter of size 3x3 is used in image restoration process? Assume $d = 4$.</p> <table border="1"> <tr><td>21</td><td>34</td><td>78</td><td>214</td><td>56</td><td>8</td></tr> <tr><td>32</td><td>214</td><td>90</td><td>210</td><td>67</td><td>45</td></tr> <tr><td>23</td><td>45</td><td>44</td><td>3</td><td>41</td><td>255</td></tr> <tr><td>82</td><td>32</td><td>211</td><td>66</td><td>201</td><td>5</td></tr> </table>	21	34	78	214	56	8	32	214	90	210	67	45	23	45	44	3	41	255	82	32	211	66	201	5	CO1	PO1	08																																								
21	34	78	214	56	8																																																																
32	214	90	210	67	45																																																																
23	45	44	3	41	255																																																																
82	32	211	66	201	5																																																																
	c)	<p>Exemplify the operation of following filters used for image restoration</p> <ol style="list-style-type: none"> Geometric mean filter Contra harmonic mean filter 	CO2	PO1	07																																																																
UNIT - V																																																																					
6	a)	<p>Apply the thresholding method based on minimizing within group variance to find the best value of the threshold for segmentation of the following image data. Assume, in the first pass threshold value is 3 and in second pass it is changed to 4. Comment on the results obtained. What could be the disadvantage of this method?</p> <table border="1"> <tr><td>Gray Level Value</td><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td></tr> <tr><td>No. of pixels</td><td>8</td><td>7</td><td>2</td><td>6</td><td>9</td><td>4</td></tr> </table>	Gray Level Value	0	1	2	3	4	5	No. of pixels	8	7	2	6	9	4	CO2	PO1	10																																																		
Gray Level Value	0	1	2	3	4	5																																																															
No. of pixels	8	7	2	6	9	4																																																															
	b)	<p>Identify 4 directional and 8 directional Chain Code and compute shape number for the following image. Analyze the effect of change in start point on shape number?</p>	CO2	PO1	10																																																																
OR																																																																					
7	a)	<p>Analyze what will be the output image if Quad tree algorithms is implemented on the below given image data. Discuss the steps in this algorithm. Splitting is to be performed if the difference between the gray level values is greater than 1.</p> <table border="1"> <tr><td>0</td><td>1</td><td>0</td><td>0</td><td>7</td><td>7</td><td>7</td><td>7</td></tr> <tr><td>1</td><td>0</td><td>2</td><td>2</td><td>7</td><td>7</td><td>7</td><td>7</td></tr> <tr><td>0</td><td>2</td><td>2</td><td>2</td><td>7</td><td>7</td><td>7</td><td>7</td></tr> <tr><td>4</td><td>4</td><td>2</td><td>2</td><td>7</td><td>7</td><td>7</td><td>7</td></tr> <tr><td>0</td><td>0</td><td>1</td><td>1</td><td>3</td><td>3</td><td>7</td><td>7</td></tr> <tr><td>1</td><td>1</td><td>2</td><td>2</td><td>3</td><td>7</td><td>7</td><td>7</td></tr> <tr><td>2</td><td>4</td><td>3</td><td>0</td><td>5</td><td>7</td><td>7</td><td>7</td></tr> <tr><td>2</td><td>3</td><td>3</td><td>5</td><td>5</td><td>0</td><td>7</td><td>7</td></tr> </table>	0	1	0	0	7	7	7	7	1	0	2	2	7	7	7	7	0	2	2	2	7	7	7	7	4	4	2	2	7	7	7	7	0	0	1	1	3	3	7	7	1	1	2	2	3	7	7	7	2	4	3	0	5	7	7	7	2	3	3	5	5	0	7	7	CO2	PO1	10
0	1	0	0	7	7	7	7																																																														
1	0	2	2	7	7	7	7																																																														
0	2	2	2	7	7	7	7																																																														
4	4	2	2	7	7	7	7																																																														
0	0	1	1	3	3	7	7																																																														
1	1	2	2	3	7	7	7																																																														
2	4	3	0	5	7	7	7																																																														
2	3	3	5	5	0	7	7																																																														

	b)	Discuss the steps of Region Growing image segmentation algorithm. Implement it to segment the given image for mentioned seed point. Assume 8 connectivity, similarity criteria is the gray level difference. Find segmented image if $T \geq 3$ initially and later If $T \geq 5$	CO2	PO1	10
--	----	---	-----	-----	-----------

0	0	5	6	7
1	1	5	8	7
0	1	6	7	7
2	0	7	6	6
0	1	5	6	5

Seed point 1 in Iteration1

Seed point 2 in Iteration2

SUPPLEMENTARY EXAMS 2024