

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Medical Electronics Engineering

Duration: 3 hrs.

Course Code: 19ML3ESHPM

Max Marks: 100

Course: Human Physiology and Medical Physics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																																
1	a)	<p>A 65-year-old man undergoes pulmonary function testing as part of a routine health-screening test. He had no pulmonary complaints. He is a lifelong non-smoker and had a prior history of asbestos exposure while serving in the Navy. His pulmonary function test results are as follows:</p> <table border="1"> <thead> <tr> <th>Test</th> <th>Actual</th> <th>Predicted</th> <th>% Predicted</th> </tr> </thead> <tbody> <tr> <td>FVC (L)</td> <td></td> <td>4.32</td> <td></td> </tr> <tr> <td>FEV1 (L)</td> <td>3.20</td> <td>3.37</td> <td>95</td> </tr> <tr> <td>EV1/FVC (%)</td> <td></td> <td>78</td> <td></td> </tr> <tr> <td>FRC (L)</td> <td></td> <td>3.25</td> <td></td> </tr> <tr> <td>ERV (L)</td> <td>0.63</td> <td>0.93</td> <td>68</td> </tr> <tr> <td>RV (L)</td> <td>2.54</td> <td>2.32</td> <td>109</td> </tr> <tr> <td>TLC (L)</td> <td></td> <td>6.09</td> <td></td> </tr> </tbody> </table> <p>Calculate actual and predicted values of lung capacities and interpret the test result.</p>	Test	Actual	Predicted	% Predicted	FVC (L)		4.32		FEV1 (L)	3.20	3.37	95	EV1/FVC (%)		78		FRC (L)		3.25		ERV (L)	0.63	0.93	68	RV (L)	2.54	2.32	109	TLC (L)		6.09		CO1	PO1	10
Test	Actual	Predicted	% Predicted																																		
FVC (L)		4.32																																			
FEV1 (L)	3.20	3.37	95																																		
EV1/FVC (%)		78																																			
FRC (L)		3.25																																			
ERV (L)	0.63	0.93	68																																		
RV (L)	2.54	2.32	109																																		
TLC (L)		6.09																																			
	b)	Explain the working principle of spirometer. Using mathematical expression explain the measurement of Functional Residual Capacity and Residual Volume	CO1	PO1	10																																
		OR																																			
2	a)	With neat diagram explain the anatomical structure of the respiratory tract.	CO1	PO1	10																																
	b)	What is hypoxia? What are the different types of hypoxia commonly observed in human beings?	CO1	PO1	10																																
		UNIT - II																																			
3	a)	Discuss the resistance and compliance vessel model of blood flow in cardio vascular system using necessary mathematical equations.	CO2	PO2	10																																

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		Also derive an expression for the pressure drop across any vessel in a given level of flow.			
	b)	Explain clinical Electrocardiography. Summarize various techniques used for the calculation of heart rate from the ECG.	CO2	PO2	10
OR					
4	a)	Prove that the work and energy expenditure of the left heart is greater compared to the right heart.	CO2	PO2	10
	b)	Discuss the properties of heart muscle with a neat sketch of cardiac muscle cell.	CO2	PO2	10
UNIT - III					
5	a)	Explain BMR Measurement Benedict-Roth closed circuit method with necessary expressions.	CO3	PO3	10
	b)	Elaborate on different modes of heat losses from the body with the relevant mathematical expressions.	CO3	PO3	10
OR					
6	a)	Explain the different methods followed in the determination of metabolic rate	CO2	PO2	10
	b)	What is respiratory quotient and BMR? What are the factors influencing the BMR	CO2	PO2	10
UNIT - IV					
7	a)	Discuss on the distribution and functions of smooth muscles in different organ systems of human body.	CO4	PO4	10
	b)	Summarize the sequence of events involved in muscle contraction from the “at rest state” to the “return to rest state”. Indicate the roles of calcium and ATP.	CO4	PO4	10
OR					
8	a)	What are the functions of muscular tissue? Brief them	CO1	PO1	10
	b)	Mention the types of muscular tissue and explain their location, function, appearance and control.	CO1	PO1	10
UNIT - V					
9	a)	Discuss how the properties and behavior of sound altered when it propagates from one medium into another.	CO5	PO6	10
	b)	Mention the various modes of retinal damage. Briefly explain.	CO5	PO6	10
OR					
10	a)	Analyze the Eye as a compound lens considering the Eye Model with relevant sketches	CO5	PO6	10
	b)	Elaborate on the neuromuscular systems in voice production with a neat block diagram.	CO5	PO6	10