

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Medical Electronics Engineering

Duration: 3 hrs.

Course Code: 19ML4PCDIN

Max Marks: 100

Course: Diagnostic Instruments

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
1	a)	Illustrate the origin and propagation of biopotentials in the human body. Describe the various interfaces involved when using electrodes for biopotential measurement, focusing on the electrode-electrolyte and electrode-skin interfaces.		CO1	PO2	10
	b)	Differentiate between polarizable and non-polarizable electrodes, providing examples of each and highlighting why non-polarizable electrodes are generally preferred for biopotential measurements.		CO3	PO2	10
OR						
2	a)	Describe any 3 types of electrodes used for biopotential measurements.		CO3	PO2	10
	b)	Discuss the significance of impedance in biopotential measurements. Explain how high electrode impedance can affect the quality of recorded signals, leading to problems like noise and motion artifacts.		CO3	PO2	10
UNIT - II						
3	a)	Discuss the general characteristics of biopotentials, including their typical frequency and amplitude ranges.		CO3	PO2	10
	b)	Describe the standard 12-lead ECG system and the concept of Einthoven's triangle. Explain how the leads are derived and their significance in clinical diagnosis.		CO3	PO2	10
OR						
4	a)	Explain the 10-20 electrode system for EEG recordings. Describe the principles of unipolar, bipolar, and average reference electrode configurations used in EEG.		CO3	PO2	10
	b)	Compare and contrast the electrode configurations used for Electrocardiogram (ECG) and Electromyogram (EMG) recordings.		CO3	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
5	a)	Compare and contrast single-ended and differential bio-amplifiers, detailing their operational principles, advantages, and disadvantages.	CO3	PO2	10
	b)	Describe the role of isolation amplifiers in biomedical instrumentation, distinguishing between transformer isolation and optical isolation methods.	CO3	PO2	10
OR					
6	a)	What is a chopper amplifier and why is it used in biomedical signal acquisition?	CO3	PO2	10
	b)	Discuss the significance of bandpass filtering in bio-amplifiers. Explain how different frequency ranges are typically selected for ECG, EEG, and EMG, and the rationale behind these choices.	CO3	PO2	10
UNIT - IV					
7	a)	Describe the methods for measuring respiration rate, and pulse rate. For each parameter, explain the underlying physiological principle and the common sensors used.	CO3	PO2	10
	b)	Explain the indirect methods for blood pressure measurement, focusing on the auscultatory and oscillometric techniques.	CO3	PO2	10
OR					
8	a)	Describe the components of an electronic manometer for direct blood pressure measurement and explain the function of systolic, diastolic, and mean detector circuits in BP monitoring.	CO3	PO2	10
	b)	Explain in brief the principles behind the indicator dilution, thermal dilution, and electromagnetic blood flow measurement techniques.	CO3	PO2	10
UNIT - V					
9	a)	Describe the working principles of pH, pO ₂ , and pCO ₂ sensors commonly used in blood gas analysers.	CO3	PO2	10
	b)	Explain the operational principle of Ion-Sensitive Field Effect Transistors (ISFETs) and Immunologically Sensitive Field Effect Transistors (IMFETs).	CO3	PO2	10
OR					
10	a)	Describe the principles and applications of the following biochemical measurement techniques: i) Flame Photometer ii) Spectrophotometer.	CO3	PO2	10
	b)	Provide a simplified schematic description of an auto analyser and discuss its advantages in clinical laboratory automation.	CO3	PO2	10