

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2023 Semester End Main Examinations

Programme: B.E.

Branch: Medical Electronics Engineering

Course Code: 19ML4PCPCS

Course: Physiological Control Systems

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

- 1 a) Reduce the block diagram using block diagram reduction technique and obtain $Y(s)/X(s)$ shown in Fig. 1(a). 12

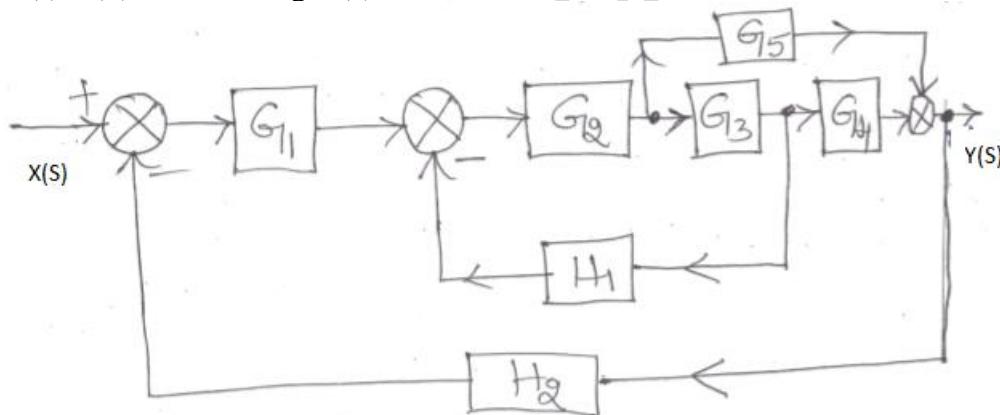


Fig.1(a)

- b) Obtain the differential equations for the system shown in Fig. 1(b) 08

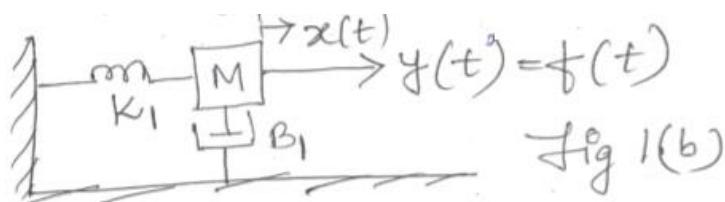


Fig.1(b)

OR

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

- 2 a) Obtain the set of equilibrium equations for the Fig. 2(a). Also draw the equivalent mechanical system. Write (i)F-V analogy (ii)F-I analogy for the same. 12

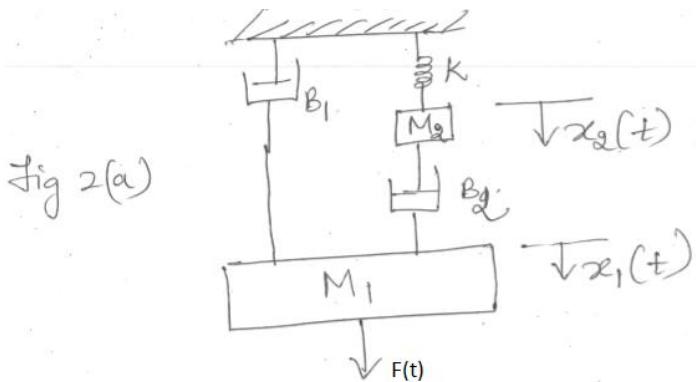


Fig.2(a)

- b) With the analysis of need for modeling derive the linear mathematical model of muscle mechanisms. 08

UNIT - II

- 3 a) Derive an expression for the step response of second order feedback control system for underdamped response. 10
- b) For unity feed back system having open loop transfer function $G(S) = K(S+3)/S(S^3+7S^2+12S)$.
 Find (i) Type of the system ii) static error Co-efficient iii) order of the system
 (iv) Characteristic equation with the input of the system $(R/2)t^2$. 10

UNIT - III

- 4 a) Sketch the complete root locus for the system having $G(S)H(S) = K/S(S+3)(S^2+3S+4.5)$ 14
- b) Elaborate on the stability analysis of the pupillary light reflex with suitable functional diagram. 08

UNIT - IV

- 5 a) Demonstrate the process of Starling heart lung preparation. 10
- b) Discuss in detail any one method of Non parametric and parametric identification methods. 10

UNIT - V

- 6 a) Sketch the bode plot and find gain margin and phase margin for the following function, $G(s) = 64(s+5)/s(s+2)$. 12
- b) Describe the various frequency domain specification terminologies with respect to the bode plots. 08

OR

- 7 a) Discuss the frequency response of the linearized Lung mechanics. 10
- b) Narrate the Glucose-insulin regulation model in Type-2 diabetic patient with respect to frequency domain analysis. 10
