

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Branch: Medical Electronics Engineering

Course Code: 19ML6PE3VS

Course: VLSI and SoC Design

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Date: 17.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
1	a)	Describe the functions of MOSFETs as a Switch.		<i>CO1</i>	<i>PO1</i>	05
	b)	Explain the working of a Complementary Metal Oxide Semiconductor (CMOS) Inverter and NOR gate.		<i>CO2</i>	<i>PO2</i>	10
	c)	Implement XOR gate logic using Transmission gate.		<i>CO3</i>	<i>PO3</i>	05
			UNIT - II			
2	a)	Describe the layers used to create MOSFET with suitable diagram.		<i>CO2</i>	<i>PO2</i>	06
	b)	Design a CMOS circuit for 4input AOI expression $F = \bar{x} \cdot y + z \cdot w$		<i>CO3</i>	<i>PO3</i>	04
	c)	With cross-sectional view, Illustrate CMOS device with MOSFETs layers in an n-well process on p substrate.		<i>CO2</i>	<i>PO2</i>	10
			UNIT - III			
3	a)	Derive an Expression for Drain current flowing in a MOSFET.		<i>CO2</i>	<i>PO2</i>	10
	b)	With suitable circuit diagram and graphs, Analyze the Transient characteristics of CMOS Inverter circuit.		<i>CO3</i>	<i>PO3</i>	10
			OR			
4	a)	Derive an expression for total dynamic power dissipation in a network consisting of N number of gates.		<i>CO2</i>	<i>PO2</i>	10
	b)	Discuss the transient response of a 2input NAND gate.		<i>CO2</i>	<i>PO2</i>	10
			UNIT - IV			
5	a)	Define SOC. Discuss and Compare SOC, SIP and SOB.		<i>CO1</i>	<i>PO1</i>	10
	b)	What is the significance of 'reusable macros' (IP) in the designing of SOC? Explain various types of reusable macros (IP) used in SOC.		<i>CO2</i>	<i>PO2</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR					
6	a)	Define the term “Design productivity gap”. Also discuss the effect of this on time to market with suitable graph.	<i>CO2</i>	<i>PO2</i>	10
	b)	Define Moore’s law. Elaborate on the limitations imposed by small device geometrics?	<i>CO2</i>	<i>PO2</i>	10
UNIT - V					
7	a)	With the help of neat diagram, Explain the principle of Waterfall design flow used in SOC.	<i>CO2</i>	<i>PO2</i>	10
	b)	Explain the system design process in detail.	<i>CO2</i>	<i>PO2</i>	10

B.M.S.C.E. - EVEN SEM 2022-23