

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Medical Electronics Engineering

Duration: 3 hrs.

Course Code: 19ML6PCBSP

Max Marks: 100

Course: Biomedical Signal Processing

Date: 12.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Justify why optimal filtering using weiner/matched filter is not possible when priori information is unavailable or noise is non-stationary.			<i>CO1</i>	<i>PO1</i>	10
		b)	Identify the primary and reference signals in case of adaptive cancellation of interferences in processing myo electric activity of respiratory muscle s and indicate how are they acquired?			<i>CO1</i>	<i>PO1</i>	07
		c)	There are two critical parameters which determine the stability of LMS algorithm what are they? Specify.			<i>CO1</i>	<i>PO1</i>	03
			UNIT - II					
	2	a)	What are the advantages and shortcomings of utilizing the smoothing process in AZTEC reconstructed waveforms?			<i>CO1</i>	<i>PO1</i>	10
		b)	Is FAN algorithm an interpolator (or) Predictor? Explain with a neat sktech			<i>CO1</i>	<i>PO1</i>	10
			UNIT - III					
	3	a)	Based on some of the techniques discussed suggest a suitable QRS detection algorithm that can detect QRS complexes from the ECG in real time.			<i>CO2</i>	<i>PO1</i>	10
		b)	Suggest a suitable method (or) technique of measuring the ST-Segment level. Justify your choice of this method. What is its shortcoming elucidate?			<i>CO2</i>	<i>PO1</i>	10
			UNIT - IV					
	4	a)	Why are model based approaches preferred in EEG analysis? Explain with suitable examples			<i>CO2</i>	<i>PO1</i>	08
		b)	Differentiate and distinguish between the different kinds of Transients in EEG			<i>CO1</i>	<i>PO1</i>	12
			OR					

5	a)	Justify the use of linear prediction analysis in EEG modeling.	CO2	PO2	06
	b)	Where does one use Yule-walker equation in EEG analysis? Why? Explain in detail.	CO1	PO2	08
	c)	How does one segmentize the EEG waveform?	CO1	PO1	06
		UNIT - V			
6	a)	Describe the characteristics of different stages of sleep in terms of frequency, voltage levels, rhythms and transients.	CO1	PO1	10
	b)	How does one estimate the transition rates from the hypnograms? Explain how one can obtain the transition probabilities from there.	CO2	PO1	10
		OR			
7	a)	What are the three important characteristics of REM sleep? Specify them.	CO1	PO1	06
	b)	What do you understand by the phrase a simple Markov chain? Explain.	CO1	PO1	08
	c)	Obtain an expression for the probability that the random variable X in a Markov process will change its state from x_i to x_m in three steps given that the system has n states.	CO2	PO2	06
