

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Medical Electronics Engineering

Duration: 3 hrs.

Course Code: 19ML6PCMIP

Max Marks: 100

Course: Medical Image Processing

Date: 05.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks																	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as	1	a)	Illustrate with examples some of the basic relationship that exists between the pixels.			CO1	-	09																	
		b)	Specify the steps involved in converting colors from HIS color model to RGB color model. Suppose RGB color triplet for a particular color is given by (0.3,0.5,0.2). Convert RGB to HIS triplets.			CO2	PO1	07																	
		c)	Identify and explain the need of computers for analyzing the biomedical images.			CO1	-	04																	
UNIT - II																									
	2	a)	Examine the type of basic intensity transformation required to highlight the contribution made to the total image appearance by specific bits.			CO2	PO1	05																	
		b)	Consider an image of size 64x64 pixels which is 3 bit image having the following intensity distribution.			CO2	PO1	09																	
			<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>r_k</td><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td></tr> <tr> <td>n_k</td><td>790</td><td>1023</td><td>850</td><td>656</td><td>329</td><td>245</td><td>122</td><td>81</td></tr> </table> Perform the histogram equalization.			r _k	0	1	2	3	4	5	6	7	n _k	790	1023	850	656	329	245	122	81		
r _k	0	1	2	3	4	5	6	7																	
n _k	790	1023	850	656	329	245	122	81																	
		c)	Can we use second derivative for image sharpening? Justify your answer.			CO2	PO1	06																	
			OR																						
	3	a)	Identify and explain the basic intensity transformation suited for the following applications. i) To enhance white/gray detail embedded in dark regions of an image ii) To expand the values of dark pixels while compressing the higher level value pixels in an image			CO2	PO1	06																	

	b)	Apply 3x3 median filter, max filter and min filter on the image given in fig 3.b to obtain a filtered image. <table border="1"> <tr><td>5</td><td>1</td><td>2</td><td>6</td><td>7</td></tr> <tr><td>4</td><td>4</td><td>7</td><td>5</td><td>8</td></tr> <tr><td>2</td><td>6</td><td>20</td><td>6</td><td>7</td></tr> <tr><td>3</td><td>1</td><td>2</td><td>4</td><td>5</td></tr> <tr><td>10</td><td>2</td><td>1</td><td>2</td><td>3</td></tr> </table> fig 3.b	5	1	2	6	7	4	4	7	5	8	2	6	20	6	7	3	1	2	4	5	10	2	1	2	3	CO2	PO1	06
5	1	2	6	7																										
4	4	7	5	8																										
2	6	20	6	7																										
3	1	2	4	5																										
10	2	1	2	3																										
	c)	Explain the fundamentals of spatial filtering with relevant examples.	CO2	-	08																									
		UNIT - III																												
4	a)	Develop a frequency domain filter to improve the appearance of an image by simultaneous intensity range compression and contrast enhancement.	CO2	PO1	10																									
	b)	Distinguish between the different frequency domain image smoothing filters.	CO2	-	10																									
		UNIT - IV																												
5	a)	Discuss any four filters that can be used to restore an image which is degraded only due to additive random noise.	CO2	PO1	08																									
	b)	Explain the algorithm to restore an image by using adaptive median filter.	CO2	-	08																									
	c)	How image restoration is different from image enhancement.	CO2	-	04																									
		UNIT - V																												
6	a)	Suggest methods to detect isolated points and lines in an image.	CO2	-	10																									
	b)	Explain the simple descriptors that gives information about the boundary of a region.	CO2	-	10																									
		OR																												
7	a)	Exemplify the region growing algorithm based on 8-connectivity and 4-connectivity.	CO2	PO1	08																									
	b)	Summarize the procedure involved in region splitting and merging segmentation technique, with a suitable example.	CO2	PO1	06																									
	c)	Discuss the use of Chain code and Shape number w.r.t. suitable example.	CO2	PO1	06																									
