

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Branch: Common to all Branches

Course Code: 18PY1BSPHY / 18PY2BSPHY

Course: APPLIED PHYSICS

Semester: I / II

Duration: 3 hrs.

Max Marks: 100

Date: 20.05.2023

Instructions: Answer five full questions, choosing one full question from each unit

Physical constants:

Mass of electron, $m_e = 9.1 \times 10^{-31} \text{ kg}$

Electronic charge, $e = 1.602 \times 10^{-19} \text{ C}$

Boltzmann constant, $k_B = 1.38 \times 10^{-23} \text{ J/K}$

Avogadro number, $N_A = 6.023 \times 10^{26} / \text{k.mol}$

Speed of light, $c = 3 \times 10^8 \text{ m/s}$

Planck constant, $h = 6.626 \times 10^{-34} \text{ Js}$

Mass of proton/neutron, $m = 1.67 \times 10^{-27} \text{ kg}$

Permittivity of free space $\epsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$

UNIT-1

1	a) Define phase velocity and group velocity. Derive the relation between them in terms of wave length.	8
	b) Set up one dimensional time independent Schrodinger's wave equation. List the properties of wave function.	8
	c) Find the momentum of an electron and the de Broglie wavelength associated with it if its kinetic energy is 1.5 keV.	4

OR

2	a) What are matter waves? Derive the expression for de-Broglie wavelength using the concept of group velocity.	8
	b) State Heisenberg's uncertainty principle. Apply the Heisenberg's uncertainty principle to show the non-existence of electron inside the nucleus.	8
	c) A quantum particle confined to one dimensional box of width 'a' is in its ground state. What is the probability of finding the particle over an interval of $(a/2)$ marked symmetrically at the center of the box?	4

UNIT - II

3	a) What is Fermi energy of a metal? Assuming the expression for density of states, deduce an expression for Fermi energy in terms of electron concentration, at 0K.	8
	b) With a neat labelled diagram explain the determination of thermal conductivity of a good conductor using Forbe's method.	8
	c) Show that the sum of the probability of occupancy of an energy state at ΔE below Fermi level and that at ΔE above the Fermi level is unity.	4

UNIT- III

4 a) Derive an expression for internal field of a solid dielectric having one dimensional array of atoms. 8

b) Prove that the Fermi level in an intrinsic semiconductor lies mid-way between the top of the valence band and the bottom of the conduction band at 0K. Indicate the Fermi level in intrinsic and extrinsic semiconductors. 8

c) The dielectric constant of Helium at 0^0 C is 1.000074. The density of atoms is $2.7 \times 10^{25} \text{ m}^{-3}$. Find the dipole moment induced in each atom when the gas is in an electric field of $3 \times 10^4 \text{ V m}^{-1}$. 4

UNIT - IV

5 a) What is Holography? With a neat diagram, explain the recording and reconstruction of hologram. 8

b) What is attenuation? Explain the causes for the attenuation. 8

c) The attenuation in an optical fiber is 4.8 dB km^{-1} . What fraction of its initial intensity remains after i) 2 km and ii) after 4 km? 4

OR

6 a) With a neat labelled band diagrams, explain the construction and working of Semiconductor laser. 8

b) What is acceptance angle of an optical fiber? Derive the expression for Numerical aperture of an optical fiber. 8

c) The ratio of population of two energy levels is 1.059×10^{-30} . Find the wavelength of light emitted by spontaneous emission at 300K. 4

UNIT - V

7 a) What is simple harmonic motion (SHM)? Explain the conservation of energy from kinetic to potential in SHM. 8

b) What is forced vibration? Set up and solve the differential equation for the forced harmonic oscillator and arrive at an expression for amplitude. 8

c) A 20 gm oscillator with natural angular frequency 10 rad/s is vibrating in damping medium. If the damping coefficient is 0.17 kg/s, how does the oscillator decay? 4
