

B. M. S. College of Engineering, Bengaluru - 560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Semester: I / II

Branch: Common to all Branches

Duration: 3 hrs.

Course Code: 21PY1BSPHY / 21PY2BSPHY

Max Marks: 100

Course: Engineering Physics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

2. **Constants:** Planck's constant, $h = 6.63 \times 10^{-34}$ Js,

Mass of electron, $m_e = 9.11 \times 10^{-31}$ kg,

Charge of electron, $e = 1.602 \times 10^{-19}$ C,

Boltzmann constant, $k = 1.38 \times 10^{-23}$ J/K,

Avogadro's number, $N_A = 6.02 \times 10^{26}$ /k mol

Velocity of light, $c = 3 \times 10^8$ m/s

Permittivity of free space, $\epsilon_0 = 8.854 \times 10^{-12}$ F/m

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

MODULE - I

1. a) Define the term group velocity & phase velocity. Arrive at the relation between group velocity & phase velocity in terms of wavelength. **08**
- b) Derive an expression for one dimensional time independent Schrodinger wave equation. **08**
- c) An electron has a de Broglie wavelength of 1.5 nm. Find its kinetic energy and group velocity. **04**

OR

2. a) What are de-Broglie waves? Derive an expression for de-Broglie wavelength using the concept of group velocity. **08**
- b) Obtain an expression for normalized wave function for a particle in one dimensional potential well of infinite height. **08**
- c) Calculate the energy required for an electron to jump from ground state to first excited state in a box of width 1.5 Å. **04**

MODULE - II

3. a) Obtain an expression for energy density of a system under thermal equilibrium in terms of Einstein's coefficients. **08**
- b) Define numerical aperture of an optical fiber and derive an expression for numerical aperture with a neat ray diagram. **08**
- c) Certain LASER system gives out 3×10^7 photons for a pulse when operated with a power of 1 mW for 11 ns. Calculate the wavelength of LASER. **04**

OR

4. a) Describe the construction and working of semiconductor LASER with a neat diagram. **08**

b) Define attenuation co-efficient. Mention its unit. Derive an expression for attenuation coefficient in an optical fiber. **08**

c) The numerical aperture of an optical fiber is 0.39. If the difference in the refractive indices of the material of its core & the cladding is 0.05, calculate the refractive index of the material of the core. **04**

MODULE - III

5. a) Define Fermi energy & Fermi factor. Discuss the variation of Fermi factor with temperature using a suitable graph. **08**

b) Explain with suitable diagram the theory of determining coefficient of thermal conductivity of a poor conductor by Lee-Charlton's method. **08**

c) Evaluate the Fermi function for an energy ($kT/2$) below the Fermi level, where the symbols have their usual meaning. **04**

MODULE - IV

6. a) Derive an expression for internal field in one dimensional array of atoms of liquid or solid dielectrics. **08**

b) Explain Hall effect in semiconductors with neat diagram. Derive an expression for Hall voltage. **08**

c) For intrinsic gallium arsenide, the room temperature electrical resistivity is $1.1 \times 10^7 \Omega\text{-m}$. If the electron and hole mobilities are respectively $0.75 \text{ m}^2/\text{Vs}$ and $0.03 \text{ m}^2/\text{Vs}$, compute the intrinsic carrier concentration at room temperature. **04**

MODULE - V

7. a) What is Forced vibration? Deduce an expression for amplitude of a body executing forced vibration. **08**

b) Explain (i) logarithmic decrement (ii) Relaxation time and (iii) Quality factor in case of damped oscillator. **08**

c) An object of mass 4 kg is attached to the bottom of a spring and set vibrating. If the time period of the object is 600 ms, calculate (i) the force constant & (ii) the frequency of oscillation. **04**
