

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: Common to all Branches

Course Code: 21PY1BSPHY / 21PY2BSPHY

Course: ENGINEERING PHYSICS

Semester: I / II

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Planck's constant, $h = 6.63 \times 10^{-34} \text{ Js}$

Mass of electron, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Mass of neutron, $m_n = 1.675 \times 10^{-27} \text{ kg}$

Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$

Boltzmann constant, $k = 1.38 \times 10^{-23} \text{ J/K}$

Velocity of light, $c = 3 \times 10^8 \text{ m/s}$

Avogadro's number, $N_A = 6.02 \times 10^{26} / \text{mol}$

Permittivity of vacuum, $\epsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

Module - I

1	<p>a) Define phase velocity and group velocity. Obtain the relation between the group velocity and particle velocity. 8</p> <p>b) Apply Schrodinger's wave equation to a particle confined in a one dimensional potential well of infinite height to obtain normalized eigen functions. 8</p> <p>c) Calculate the kinetic energy and group velocity of an electron having a de-Broglie wavelength of 2 nm. 4</p>
---	---

OR

2	<p>a) State and explain Heisenberg's uncertainty principle. Using this principle show that a free electron cannot exist within the nucleus of an atom. 8</p> <p>b) Mention the properties of the wave function. Set up time-independent one-dimensional Schrodinger's wave equation. 8</p> <p>c) An electron has a speed of 800 ms^{-1} with an accuracy of 0.004%. Calculate the certainty with which we can locate the position of the electron. 4</p>
---	--

Module - II

3	<p>a) Derive an expression for the energy density of radiation under equilibrium conditions in terms of Einstein's coefficients. 8</p> <p>b) Discuss the construction and working of semiconductor diode LASER with an energy level diagram. 8</p> <p>c) The ratio of population of two energy levels is 1.059×10^{-30}. Find the wavelength of light emitted at 330 K. 4</p>
---	--

OR

4	<p>a) What is numerical aperture? Derive an expression for the numerical aperture of an optical fiber and then arrive at the condition for light propagation. 8</p>
---	--

b) With suitable block diagram explain the point-point optical fiber communication. Mention any two advantages of optical fiber communication over conventional communication system. 8

c) The number of modes in a step index fiber is 3500. The diameter of the core is $50 \mu\text{m}$ and numerical aperture is 0.25. Calculate the operating wavelength. 4

Module - III

5 a) Define Fermi energy and Fermi factor. Discuss the dependance of Fermi factor on energy and temperature with suitable drawing. 8

b) Define coefficient of thermal conductivity of a metal and mention its SI unit. Obtain the expression for thermal conductivity of a conductor using classical free electron theory. 8

c) Calculate the probability of an electron occupying an energy level 0.02 eV above and below the Fermi level at 200 K. 4

Module - IV

6 a) What is the internal field? Derive an expression for internal field in solid and liquid dielectrics for one dimensional array of atoms. 8

b) With suitable diagram explain the phenomenon of Hall Effect in semiconductors. Obtain the expression for Hall voltage and Hall coefficient. 8

c) A solid contains 5×10^{28} identical atoms per m^3 , each with a polarizability of $2 \times 10^{-40} \text{ Fm}^2$. Assuming that the internal field is given by the Lorentz relation, calculate the ratio of the internal field to the applied field. 4

Module - V

7 a) What is simple harmonic motion. Derive the differential equation for SHM and arrive at an expression for time period and frequency. 8

b) What are forced vibrations? Set up the equation of motion for forced vibration and obtain the expression for maximum amplitude. 8

c) A particle executes SHM of amplitude 5 cm. When the particle is 3 cm away from the mean position its acceleration is found to be 48 cm s^{-2} . Calculate its velocity at the same instant and its time period. 4
